Stressor: 645


Chemical name selected from established chemical ontologies or, depending on the information available, this could also refer to chemical categories (i.e., groups of chemicals with defined structural features known to trigger the MIE).  It can also include non-chemical prototypical stressors such as genetic or environmental factors. More help

Cigarette smoke

Stressor Overview

A structured data field that can be used to annotate an AOP with standardized terms identifying prototypical stressors known to trigger the MIE(s)/AOP. More help

AOPs Including This Stressor

This table is automatically generated and lists the AOPs associated with this prototypical stressor. More help

Chemical Table

A list of chemicals associated with a prototypical stressor. More help
Preferred name DTXID Casrn jchem_inchi_key indigo_inchi_key User term
Cigarette smoke DTXSID5035038 NOCAS Cigarette smoke


List of the literature that was cited for this prototypical stressor. More help

Ashley, F., Kannel, W.B., Sorlie, P.D., and Masson, R. (1975). Pulmonary function: relation to aging, cigarette habit, and mortality: the Framingham Study. Ann. Int. Med. 82(6), 739-745.

Baby, M.K., Muthu, P.K., Johnson, P., and Kannan, S. (2014). Effect of cigarette smoking on nasal mucociliary clearance: A comparative analysis using saccharin test. Lung India 31(1), 39-42. 

Brekman, A., Walters, M.S., Tilley, A.E., and Crystal, R.G. (2014). FOXJ1 prevents cilia growth inhibition by cigarette smoke in human airway epithelium in vitro. Am. J. Respir. Cell Mol. Biol. 51(5), 688-700.

Broekema, M., ten Hacken, N.H., Volbeda, F., Lodewijk, M.E., Hylkema, M.N., Postma, D.S., et al. (2009). Airway epithelial changes in smokers but not in ex-smokers with asthma. Am. J. Respir. Crit. Care Med. 180(12), 1170-1178.

Cantin, A.M., Bilodeau, G., Ouellet, C., Liao, J., and Hanrahan, J.W. (2006a). Oxidant stress suppresses CFTR expression. Am. J. Physiol. Cell Physiol.y 290(1), C262-C270.

Cantin, A.M., Hanrahan, J.W., Bilodeau, G., Ellis, L., Dupuis, A., Liao, J., et al. (2006b). Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am. J. Respir. Crit. Care Med. 173(10), 1139-1144.

Chinnapaiyan, S., Dutta, R., Bala, J., Parira, T., Agudelo, M., Nair, M., et al. (2018). Cigarette smoke promotes HIV infection of primary bronchial epithelium and additively suppresses CFTR function. Sci. Rep. 8(1), 1-10.

Cohen, N.A., Zhang, S., Sharp, D.B., Tamashiro, E., Chen, B., Sorscher, E.J., et al. (2009). Cigarette smoke condensate inhibits transepithelial chloride transport and ciliary beat frequency. Laryngoscope 119(11), 2269-2274.

Dransfield, M.T., Wilhelm, A.M., Flanagan, B., Courville, C., Tidwell, S.L., Raju, S.V., et al. (2013). Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD. Chest 144(2), 498-506.

Dülger, S., Akdeniz, Ö., Solmaz, F., Şengören Dikiş, Ö., and Yildiz, T. (2018). Evaluation of nasal mucociliary clearance using saccharin test in smokers: A prospective study. Clin. Respir. J. 12(4), 1706-1710. 

Gold, D.R., Wang, X., Wypij, D., Speizer, F.E., Ware, J.H., and Dockery, D.W. (1996). Effects of cigarette smoking on lung function in adolescent boys and girls. N. Engl. J. Med. 335(13), 931-937. 

Habesoglu, M., Demir, K., Yumusakhuylu, A.C., Sahin Yilmaz, A., and Oysu, C. (2012). Does passive smoking have an effect on nasal mucociliary clearance? Otolaryngol. Head Neck Surg. 147(1), 152-156.

Hassan, F., Xu, X., Nuovo, G., Killilea, D.W., Tyrrell, J., Da Tan, C., et al. (2014). Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels. Respir. Res. 15(1), 1-9.

Knoll, M., Shaoulian, R., Magers, T., and Talbot, P. (1995). Ciliary beat frequency of hamster oviducts is decreased in vitro by exposure to solutions of mainstream and sidestream cigarette smoke. Biol. Reprod. 53(1), 29-37.

Kuperman, A.S., and Riker, J.B. (1973). The variable effect of smoking on pulmonary function. Chest 63(5), 655-660.

Lambert, J.A., Raju, S.V., Tang, L.P., McNicholas, C.M., Li, Y., Courville, C.A., et al. (2014). Cystic fibrosis transmembrane conductance regulator activation by roflumilast contributes to therapeutic benefit in chronic bronchitis. Am. J. Respir. Cell Mol. Biol. 50(3), 549-558.

Pagliuca, G., Rosato, C., Martellucci, S., De Vincentiis, M., Greco, A., Fusconi, M., et al. (2015). Cytologic and functional alterations of nasal mucosa in smokers: temporary or permanent damage? Otolaryngol. Head Neck Surg. 152(4), 740-745.

Polosa, R., Emma, R., Cibella, F., Caruso, M., Conte, G., Benfatto, F., et al. (2021). Impact of exclusive e-cigarettes and heated tobacco products use on muco-ciliary clearance. Ther. Adv. Chronic Dis. 12, 20406223211035267-20406223211035267. 

Proença, M., Xavier, R.F., Ramos, D., Cavalheri, V., Pitta, F., and Ramos, E.C. (2011). Immediate and short term effects of smoking on nasal mucociliary clearance in smokers. Revista Portuguesa de Pneumologia (English Edition) 17(4), 172-176.

Raju, S.V., Jackson, P.L., Courville, C.A., McNicholas, C.M., Sloane, P.A., Sabbatini, G., et al. (2013). Cigarette smoke induces systemic defects in cystic fibrosis transmembrane conductance regulator function. Am. J. Respir. Crit. Care Med. 188(11), 1321-1330.

Raju, S.V., Rasmussen, L., Sloane, P.A., Tang, L.P., Libby, E.F., and Rowe, S.M. (2017). Roflumilast reverses CFTR-mediated ion transport dysfunction in cigarette smoke-exposed mice. Respir. Res. 18(1), 1-8.

Raju, S.V., Solomon, G.M., Dransfield, M.T., and Rowe, S.M. (2016). Acquired cystic fibrosis transmembrane conductance regulator dysfunction in chronic bronchitis and other diseases of mucus clearance. Clin. Chest Med. 37(1), 147-158.

Rasmussen, J.E., Sheridan, J.T., Polk, W., Davies, C.M., and Tarran, R. (2014). Cigarette smoke-induced Ca2+ release leads to cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. J. Biol. Chem. 289(11), 7671-7681.

Schmid, A., Baumlin, N., Ivonnet, P., Dennis, J.S., Campos, M., Krick, S., et al. (2015). Roflumilast partially reverses smoke-induced mucociliary dysfunction. Respir. Res. 16(1), 1-11.

Sloane, P.A., Shastry, S., Wilhelm, A., Courville, C., Tang, L.P., Backer, K., et al. (2012). A pharmacologic approach to acquired cystic fibrosis transmembrane conductance regulator dysfunction in smoking related lung disease. PloS One 7(6), e39809.

Solak, I., Marakoglu, K., Pekgor, S., Kargin, N.C., Alataş, N., and Eryilmaz, M.A. (2018). Nasal mucociliary activity changes in smokers. Konuralp Med. J. 10(3), 269-275.

Tantisuwat, A., and Thaveeratitham, P. (2014). Effects of smoking on chest expansion, lung function, and respiratory muscle strength of youths. J. Phys. Ther. Sci. 26(2), 167-170. 

Verra, F., Escudier, E., Lebargy, F., Bernaudin, J.F., Crémoux, H.D., and Bignon, J. (1995). Ciliary abnormalities in bronchial epithelium of smokers, ex-smokers, and nonsmokers. Am. J. Respir. Crit. Care Med. 151(3), 630-634. 

Wang, L.-F., White, D.R., Andreoli, S.M., Mulligan, R.M., Discolo, C.M., and Schlosser, R.J. (2012). Cigarette smoke inhibits dynamic ciliary beat frequency in pediatric adenoid explants. Otolaryngol. Head Neck Surg. 146(4), 659-663.

Xavier, R.F., Ramos, D., Ito, J.T., Rodrigues, F.M., Bertolini, G.N., Macchione, M., et al. (2013). Effects of cigarette smoking intensity on the mucociliary clearance of active smokers. Respiration 86(6), 479-485. 

Xu, X., Balsiger, R., Tyrrell, J., Boyaka, P.N., Tarran, R., and Cormet-Boyaka, E. (2015). Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR. Biochim. Biophys. Acta 1850(6), 1224-1232.

Yadav, J., and Kaushik, G. (2014). K Ranga R. Passive smoking affects nasal mucociliary clearance. J. Indian Acad. Clin. Med. 15(2), 96-99.

Yaghi, A., Zaman, A., Cox, G., and Dolovich, M.B. (2012). Ciliary beating is depressed in nasal cilia from chronic obstructive pulmonary disease subjects. Respir. Med. 106(8), 1139-1147.