API

Event: 1004

Key Event Title

?

Reduced, Posterior swim bladder inflation

Short name

?

Reduced, Posterior swim bladder inflation

Biological Context

?

Level of Biological Organization
Organ


Organ term

?

Organ term
swim bladder


Key Event Components

?

Process Object Action
swim bladder inflation posterior chamber swim bladder decreased

Key Event Overview


AOPs Including This Key Event

?

AOP Name Role of event in AOP
DIO2i posterior swim bladder KeyEvent
DIO1i posterior swim bladder KeyEvent

Stressors

?


Taxonomic Applicability

?

Term Scientific Term Evidence Link
zebrafish Danio rerio High NCBI
fathead minnow Pimephales promelas High NCBI

Life Stages

?

Life stage Evidence
Embryo High

Sex Applicability

?

Term Evidence
Unspecific High

Key Event Description

?


The teleost swim bladder is a gas-filled structure that consists of two chambers, the posterior and anterior chamber. In zebrafish, the posterior chamber inflates around 96 h post fertilization (hpf) which is 2 days post hatch, and the anterior chamber inflates around 21 dpf (days post fertilization). In fathead minnow, the posterior and anterior chamber inflate around 6 and 14 dpf respectively.

The posterior chamber is formed from a bud originating from the foregut endoderm (Winata et al., 2009). The posterior chamber operates as a hydrostatic organ. The volume of gas in the adult swim bladder is continuously adjusted to regulate body density and buoyancy.

Many amphibians and frogs go through an embryo-larval transition phase marking the switch from endogenous feeding (from the yolk) to exogenous feeding. In zebrafish, embryonic-to-larval transition takes place around 96 hours post fertilization (hpf). As in amphibians, the transition between the different developmental phases includes maturation and inflation of the swim bladder (Liu and Chan, 2002).

Reduced inflation of the posterior chamber may manifest itself as either a complete failure to inflate the chamber or a reduced size of the chamber.


How It Is Measured or Detected

?


In several fish species, inflation of the posterior chamber can easily be observed using a stereomicroscope because the larvae are still transparent during those early developmental stages. This is for example true for zebrafish and fathead minnow. Posterior chamber size can then be measured based on photographs with a calibrator.


Domain of Applicability

?


Taxonomic: Teleost fish can be divided in two groups according to swim bladder morphology: physoclistous (e.g., yellow perch) and physostomus (e.g., zebrafish and fathead minnow). Physostomus fish retain a duct between the digestive tract and the swim bladder during adulthood allowing them to gulp air at the surface to fill the swim bladder. In contrast, in physoclistous fish, once initial inflation by gulping atmospheric air at the water surface has occurred, the swim bladder is closed off from the digestive tract and swim bladder volume is regulated by gas secretion into the swim bladder (Wooley and Qin, 2010). Much of the evidence for impaired posterior chamber of the swim bladder currently comes from work on zebrafish and fathead minnow (Stinckens et al., 2018; Cavallin et al., 2017; Wang et al., 2020).

Life stage: The posterior chamber inflates during a specific developmental time frame. In zebrafish, the posterior chamber inflates around 96 h post fertilization (hpf) which is 2 days post hatch. In fathead minnow, the posterior chamber inflates around 6 dpf. Therefore this KE is only applicable to the embryonic life stage.

Sex: Zebrafish are undifferentiated gonochorists since both sexes initially develop an immature ovary (Maack and Segner, 2003). Immature ovary development progresses until approximately the onset of the third week. Later, in female fish immature ovaries continue to develop further, while male fish undergo transformation of ovaries into testes. Final transformation into testes varies among male individuals, however finishes usually around 6 weeks post fertilization. Since the posterior chamber inflates around 5 days post fertilization, when sex differentiation has not started yet, sex differences are expected to play a minor role in the current AOP.

 


References

?


Cavallin, J.E., Ankley, G.T., Blackwell, B.R., Blanksma, C.A., Fay, K.A., Jensen, K.M., Kahl, M.D., Knapen, D., Kosian, P.A., Poole, S.T., Randolph, E.C., Schroeder, A.L., Vergauwen, L., Villeneuve, D.L., 2017. Impaired swim bladder inflation in early life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid. Environmental Toxicology and Chemistry 36, 2942-2952.

Liu, Y.W., Chan, W.K., 2002. Thyroid hormones are important for embryonic tolarval transitory phase in zebrafish. Differentiation 70, 36–45, http://dx.doi.org/10.1046/j.1432-0436.2002.700104.x.

Maack, G., Segner, H., 2003. Morphological development of the gonads in zebrafish. Journal of Fish Biology 62, 895-906.

Stinckens, E., Vergauwen, L., Ankley, G.T., Blust, R., Darras, V.M., Villeneuve, D.L., Witters, H., Volz, D.C., Knapen, D., 2018. An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. Aquatic Toxicology 200, 1-12.

Wang, J.X., Shi, G.H., Yao, J.Z., Sheng, N., Cui, R.N., Su, Z.B., Guo, Y., Dai, J.Y., 2020. Perfluoropolyether carboxylic acids (novel alternatives to PFOA) impair zebrafish posterior swim bladder development via thyroid hormone disruption. Environment International 134.

Winata, C.L., Korzh, S., Kondrychyn, I., Zheng, W., Korzh, V., Gong, Z., 2009.Development of zebrafish swimbladder: the requirement of Hedgehogsignaling in specification and organization of the three tissue layers. Dev. Biol.331, 222–236, http://dx.doi.org/10.1016/j.ydbio.2009.04.035.

Woolley, L.D., Qin, J.G., 2010. Swimbladder inflation and its implication to the culture of marine finfish larvae. Reviews in Aquaculture 2, 181-190.