This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 1682
Key Event Title
Disruption, Progenitor cells of second heart field
Short name
Biological Context
Level of Biological Organization |
---|
Cellular |
Cell term
Organ term
Key Event Components
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
TBX1 inhibition leading to congenital cardiac conotruncal anomalies | KeyEvent | Jinsoo Lee (send email) | Under development: Not open for comment. Do not cite | |
RALDH2 and cardiovascular developmental defects | KeyEvent | Gina Mennen (send email) | Open for comment. Do not cite |
Taxonomic Applicability
Life Stages
Sex Applicability
Key Event Description
The first heart field (FHF) and second heart field (SHF) can be distinguished in the cardiac crescent and reside in a horseshoe shaped form (Brade et al., 2018). The SHF cells will stay in a proliferative state until they enter the heart tube to differentiate (Brade et al., 2018). The SHF promotes heart tube elongation at the venous and arterial poles and contributes to the sub pulmonary myocardium (el Robrini et al., 2016; S. Wang & Moise, 2019). The SHF will contribute to the right ventricle and outflow tract (Carlson, 2018).
The SHF progenitors facilitate development of the outflow tract, atrium and right ventricle (S. Wang & Moise, 2019). The SHF contributes to the distal myocardium of the OFT and the mesodermal part of great vessel smooth muscles (Buckingham et al., 2005; Choudhary et al., 2009; Dyer & Kirby, 2009). The anterior heart field (AHF) within the SHF gives rise to the OFT and the right ventricle (Kelly et al., 2001; Meilhac et al., 2004; Zaffran et al., 2004). Mef2c positive cells are specific to the AHF (Dodou et al., 2004; Verzi et al., 2005). The AHF requires hedgehog (Hh) signaling from the pharyngeal endoderm for OFT septation but not for OFT elongation (Goddeeris et al., 2007).
How It Is Measured or Detected
Domain of Applicability
References
Brade, T., Pane, L. S., Moretti, A., Chien, K. R., & Laugwitz, K.-L. (2018). Embryonic Heart Progenitors and Cardiogenesis. 1–18. https://doi.org/10.1101/cshperspect.a013847
Buckingham, M., Meilhac, S., & Zaffran, S. (2005). Building the mammalian heart from two sources of myocardial cells. Nature Reviews. Genetics, 6(11), 826–835. https://doi.org/10.1038/NRG1710
Carlson, B. M. (2018). Human Embryology and Developmental biology E-book. https://books.google.com/books?hl=nl&lr=&id=iyx6DwAAQBAJ&oi=fnd&pg=PP1&dq=carlson+human+embryology&ots=ZCgJJZr-17&sig=LXSoOfaYSNJLoFYaiiJHeqrNyw4
Choudhary, B., Zhou, J., Li, P., Thomas, S., Kaartinen, V., & Sucov, H. M. (2009). Absence of TGFbeta signaling in embryonic vascular smooth muscle leads to reduced lysyl oxidase expression, impaired elastogenesis, and aneurysm. Genesis (New York, N.Y. : 2000), 47(2), 115–121. https://doi.org/10.1002/DVG.20466
Dodou, E., Verzi, M. P., Anderson, J. P., Xu, S. M., & Black, B. L. (2004). Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development (Cambridge, England), 131(16), 3931–3942. https://doi.org/10.1242/DEV.01256
Dyer, L. A., & Kirby, M. L. (2009). The role of secondary heart field in cardiac development. Developmental Biology, 336(2), 137–144. https://doi.org/10.1016/J.YDBIO.2009.10.009
el Robrini, N., Etchevers, H. C., Ryckebüsch, L., Faure, E., Eudes, N., Niederreither, K., Zaffran, S., & Bertrand, N. (2016). Cardiac outflow morphogenesis depends on effects of retinoic acid signaling on multiple cell lineages. Developmental Dynamics, 245(3), 388–401. https://doi.org/10.1002/dvdy.24357
Goddeeris, M. M., Schwartz, R., Klingensmith, J., & Meyers, E. N. (2007). Independent requirements for Hedgehog signaling by both the anterior heart field and neural crest cells for outflow tract development. Development (Cambridge, England), 134(8), 1593–1604. https://doi.org/10.1242/DEV.02824
Kelly, R. G., Brown, N. A., & Buckingham, M. E. (2001). The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Developmental Cell, 1(3), 435–440. https://doi.org/10.1016/S1534-5807(01)00040-5
Meilhac, S. M., Esner, M., Kelly, R. G., Nicolas, J. F., & Buckingham, M. E. (2004). The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Developmental Cell, 6(5), 685–698. https://doi.org/10.1016/S1534-5807(04)00133-9
Verzi, M. P., McCulley, D. J., de Val, S., Dodou, E., & Black, B. L. (2005). The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Developmental Biology, 287(1), 134–145. https://doi.org/10.1016/J.YDBIO.2005.08.041
Wang, S., & Moise, A. R. (2019). Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis, 57(7). https://doi.org/10.1002/dvg.23303
Zaffran, S., Kelly, R. G., Meilhac, S. M., Buckingham, M. E., & Brown, N. A. (2004). Right ventricular myocardium derives from the anterior heart field. Circulation Research, 95(3), 261–268. https://doi.org/10.1161/01.RES.0000136815.73623.BE