This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 244
Key Event Title
Alkylation, Protein
Short name
Biological Context
Level of Biological Organization |
---|
Molecular |
Cell term
Cell term |
---|
eukaryotic cell |
Organ term
Key Event Components
Process | Object | Action |
---|---|---|
protein alkylation | increased |
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
Protein Alkylation to Liver Fibrosis | MolecularInitiatingEvent | Brigitte Landesmann (send email) | Open for citation & comment | WPHA/WNT Endorsed |
Renal protein alkylation leading to kidney toxicity | MolecularInitiatingEvent | Angela Mally (send email) | Not under active development | Under Development |
Taxonomic Applicability
Life Stages
Sex Applicability
Key Event Description
Alkylation is the transfer of an alkyl group from one molecule to another. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion or a carbene (or their equivalents). Protein alkylation is the addition of an alkyl group to a protein amino acid. An alkyl group is any group derived from an alkane by removal of one hydrogen atom. Alkylating agents are highly reactive chemicals that introduce alkyl groups into biologically active molecules and thereby prevent their proper functioning. Alkylating agents are classified according to their nucleophilic or electrophilic character. Nucleophilic alkylating agents deliver the equivalent of an alkyl anion (carbanion). These compounds typically can add to an electron-deficient carbon atom such as at a carbonyl group. Electrophilic alkylating agents deliver the equivalent of an alkyl cation. Alkyl halides can also react directly with amines to form C-N bonds; the same holds true for other nucleophiles such as alcohols, carboxylic acids, thiols, etc. Alkylation with only one carbon is termed methylation. [1] [2]
Covalent protein alkylation by reactive electrophiles was identified as a key triggering event in chemical toxicity over 40 years ago and these reactions remain a major cause of chemical-induced toxicity. Interestingly, some chemical molecules produce significant protein covalent binding without causing toxicity, which suggests that only a critical subset of protein alkylation events contributes to injury. The study by Codreanu et al. (2014) describes an inventory of electrophile- mediated protein damage in intact cells and suggests that non-toxic covalent binding may largely be survivable damage to cytoskeletal components, whereas toxic covalent binding produces lethal injury by targeting protein synthesis and catabolism and possibly mitochondrial electron transport. [3] [4] [5] [6] [7]
How It Is Measured or Detected
HPLC-ESI-MS/MS analysis
High Performance Liquid Chromatography – electrospray tandem mass spectrometry (HPLC-ESI-MS/MS) is the most popular MS technique. It combines the separation ability of HPLC along with the sensitivity and specificity of detection from MS. One of the advantages of HPLC-MS is that it allows samples to be rapidly desalted online, so no sample preparation is required unlike samples for GC-MS. Electrospray ionisation can produce singly or multiply charged ions. Typically high molecular weight compounds have multiple charges i.e. peptides and proteins. This technique is particularly suited to analysing polar molecules of mass <2000 Dalton and requires no prior derivatisation in most applications. [8] [3] [9]
MALDI-TOF/MS (Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry)
Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization technique used in mass spectrometry, allowing the analysis of biomolecules (biopolymers such as DNA, proteins, peptides and sugars) and large organic molecules (such as polymers, dendrimers and other macromolecules), which tend to be fragile and fragment when ionized by more conventional ionization methods. MALDI methodology is a three-step process. First, the sample is mixed with a suitable matrix material and applied to a metal plate. Second, a pulsed laser irradiates the sample, triggering ablation and desorption of the sample and matrix material. Finally, the analyte molecules are ionized by being protonated or deprotonated in the hot plume of ablated gases, and can then be accelerated into whichever mass spectrometer is used to analyse them. [10]
Domain of Applicability
Human, rat and mouse [11]
References
- ↑ The European Bioinformatics Institute http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0008213 (accessed on 20 January 2016).
- ↑ NLM, Medical Subject Headings, National Library of Medicine, http://www.nlm.nih.gov/cgi/mesh/2011/MB_cgi?mode=&term=Alkylating+agents (accessed on 20 January 2016).
- ↑ 3.0 3.1 3.2 Codreanu, S.G. et al. (2014), Alkylation damage by lipid electrophiles targets functional protein systems, Molecular & Cellular Proteomics, vol. 13, no. 3, pp.849–859.
- ↑ Grattagliano, I. et al. (2009), Biochemical mechanisms in drug-induced liver injury: certainties and doubts, World J Gastroenterol, vol. 15, no. 39, pp. 4865-4876.
- ↑ Livertox http://livertox.nlm.nih.gov/AlkylatingAgents.htm
- ↑ 6.0 6.1 Kehrer, J.P. and S. Biswal (2000), The Molecular Effects of Acrolein, Toxicol. Sciences,vol.57,pp.6-15.
- ↑ Schopfer, F.J., C. Cipollina and B.A. Freeman (2011), Formation and Signaling Actions of Electrophilic Lipids, Chem Rev, vol. 111, no. 10,pp.5997–6021.
- ↑ Zhang F et al. (2005), Differential adduction of proteins vs. deoxynucleosides by methyl methanesulfonate and 1-methyl-1-nitrosourea in vitro, Mass Spectrom, vol 19, no. 4, pp. 438–448.
- ↑ Gundry, R.L. et al. (2009), Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow, Curr Protoc Mol Biol, chapter 10, section VI, unit 10.25, pp. 1-23.
- ↑ Kislinger, T. et al. (2005), Analysis of protein glycation products by MALDI-TOF/MS, Ann N Y Acad Sci, vol. 1043, pp. 249-259.
- ↑ 11.0 11.1 EPA Toxicological review of Carbon Tetrachloride (CAS No. 56-23-5). March 2010 EPA/635/R-08/005F available at: http://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0020tr.pdf (accessed 24.10.2015)
- ↑ Auerbach, S.S. et al. (2008), A comparative 90 day toxicity study of allyl acetate, allyl alcohol and acrolein, Toxicology, Vol. 253, No.1-3, pp.79–88.
- ↑ Huang, L. et al. (2008), Genes related to apoptosis predict necrosis of the liver as a phenotype observed in rats exposed to a compendium of hepatotoxicants, BMC Genomics, vol. 9: 288.
- ↑ Mohammad, M.K. et al. (2012), Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress, Toxicol Appl Pharmacol, vol. 265, no. 1, pp. 73-82.
- ↑ Yamada T et al., (2013), A category approach to predicting the repeated-dose hepatotoxicity of allyl esters, Regulatory Toxicology and Pharmacology, vol. 65, no. 2, pp. 189–195.
- ↑ Basu, S. (2003), Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients, Toxicology,vol.189, no.1-2, pp. 113-127.
- ↑ Calabrese, E.J., L.A. Baldwin and H.M. Mehendale (1993), G2 subpopulation in rat liver induced into mitosis by low-level exposure to carbon tetrachloride: an adaptive response, Toxicol Appl Pharmacol, vol. 121. no. 1, pp. 1-7.
- ↑ Clawson, G.A. (1989), Mechanisms of carbon tetrachloride hepatotoxicity, Pathol Immunopathol Res, vol. 8, no. 2, pp.104-112.
- ↑ Knockaert, L. et al. (2012), Carbon tetrachloride-mediated lipid peroxidation induces early mitochondrial alterations in mouse liver, Lab Invest, vol. 92, no. 3, pp. 396-410.
- ↑ Lee Kwang-Jong et al. (2004), Induction of molecular chaperones in carbon tetrachloride-treated rat liver: implications in protection against liver damage, Cell Stress Chaperones, vol. 9, no. 1, pp. 58-68.
- ↑ Li, Xiaowei et al. (2014), NMR-based metabonomic and quantitative real-time PCR in the profiling of metabolic changes in carbon tetrachloride-induced rat liver injury, J Pharm Biomed Anal; vol. 89, pp.42-49.
- ↑ Manibusan, M.K., M. Odin and D.A. Eastmond (2007), Postulated carbon tetrachloride mode of action: a review, J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, vol. 25, no. 3,pp. 185-209.
- ↑ Masuda, Y. (2006), [Learning toxicology from carbon tetrachloride-induced hepatotoxicity],Yakugaku Zasshi, vol. 126, no. 10, pp. 885-899.
- ↑ Nagano, K. et al. (2007), Inhalation carcinogenicity and chronic toxicity of carbon tetrachloride in rats and mice, Inhal Toxicol, vol 19, no. 13, pp. 1089-1103.
- ↑ Recknagel, R.O. (1976), Carbon tetrachloride hepatotoxicity, Pharmacol Rev, vol. 19, no. 2,pp.145-208.
- ↑ Weber, L.W., M. Boll and A. Stampfl (2003), Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model, Crit Rev Toxicol, vol. 33, no. 2, pp. 105-136.
- ↑ Bauman, J.N. et al. (2009), Can in vitro metabolism-dependent covalent binding data distinguish hepatotoxic from nonhepatotoxic drugs? An analysis using human hepatocytes and liver S-9 fraction, Chem Res Toxicol, vol. 22, no. 2, pp. 332-340.
- ↑ Chen, Q. et al. (1990), The mechanism of cysteine conjugate cytotoxicity in renal epithelial cells. Covalent binding leads to thiol depletion and lipid peroxidation, J Biol Chem, vol. 265, no. 35, pp. 21603-21611.
- ↑ Dennehy, M.K. et al. (2006), Cytosolic and nuclear protein targets of thiol-reactive electrophiles, Chem Res Toxicol, vol. 19, no. 1, pp. 20-29.
- ↑ Shin, N.Y. et al. (2007), Protein targets of reactive electrophiles in human liver microsomes, Chem Res Toxicol, vol. 20, no. 6, pp. 859-867.