This AOP is licensed under the BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
AOP: 258
Title
Renal protein alkylation leading to kidney toxicity
Short name
Graphical Representation
Point of Contact
Contributors
- Angela Mally
Coaches
OECD Information Table
OECD Project # | OECD Status | Reviewer's Reports | Journal-format Article | OECD iLibrary Published Version |
---|---|---|---|---|
1.43 | Under Development |
This AOP was last modified on February 28, 2024 14:59
Revision dates for related pages
Page | Revision Date/Time |
---|---|
Alkylation, Protein | September 16, 2017 10:14 |
Decrease, Mitochondrial ATP production | September 16, 2017 10:14 |
Increase, Cytotoxicity (renal tubular cell) | March 03, 2022 15:14 |
Occurrence, Kidney toxicity | March 04, 2022 10:58 |
Mitochondrial dysfunction | April 17, 2024 08:26 |
Alkylation, Protein leads to Mitochondrial dysfunction | February 28, 2024 14:58 |
Mitochondrial dysfunction leads to Decrease, Mitochondrial ATP production | January 05, 2023 07:47 |
Decrease, Mitochondrial ATP production leads to Increase, Cytotoxicity (renal tubular cell) | October 25, 2017 09:24 |
Increase, Cytotoxicity (renal tubular cell) leads to Occurrence, Kidney toxicity | March 08, 2022 11:46 |
Abstract
It is well established that bioactivation of xenobiotics to reactive intermediates that covalently bind to proteins presents a major mechanism by which xenobiotics may cause proximal tubule injury. Examples for compounds that form covalent protein adducts in proximal tubule cells include haloalkenes (e.g. trichloroethylene, tetrachloroethylene, hexachloro-1,3-butadiene, chloroform), quinones (derived from e.g. hydroquinone, bromobenzene, 4-aminophenol), cephalosporins, and N-(3,5-dichlorophenyl)succinimide [1-6]. Covalent interaction of a chemical or a metabolite with cellular proteins represents the molecular initiating event (MIE) that triggers perturbation of cellular functions, of which mitochondrial dysfunction (KE1) leading to ATP depletion (KE2) appears to be most critical for proximal tubule cell death (KE3) by apoptosis and/or necrosis [5, 7-10]. Tubular obstruction and inflammatory responses to proximal tubule injury including activation of complement may cause secondary toxicity and thus amplify kidney injury, resulting in a progressive decline in kidney function (evidenced by e.g. rise in serum creatinine and blood urea nitrogen) (AO).
AOP Development Strategy
Context
Strategy
Summary of the AOP
Events:
Molecular Initiating Events (MIE)
Key Events (KE)
Adverse Outcomes (AO)
Type | Event ID | Title | Short name |
---|
MIE | 244 | Alkylation, Protein | Alkylation, Protein |
KE | 177 | Mitochondrial dysfunction | Mitochondrial dysfunction |
KE | 40 | Decrease, Mitochondrial ATP production | Decrease, Mitochondrial ATP production |
KE | 709 | Increase, Cytotoxicity (renal tubular cell) | Increase, Cytotoxicity (renal tubular cell) |
AO | 814 | Occurrence, Kidney toxicity | Occurrence, Kidney toxicity |
Relationships Between Two Key Events (Including MIEs and AOs)
Title | Adjacency | Evidence | Quantitative Understanding |
---|
Alkylation, Protein leads to Mitochondrial dysfunction | adjacent | Not Specified | Low |
Mitochondrial dysfunction leads to Decrease, Mitochondrial ATP production | adjacent | High | Low |
Decrease, Mitochondrial ATP production leads to Increase, Cytotoxicity (renal tubular cell) | adjacent | High | Low |
Increase, Cytotoxicity (renal tubular cell) leads to Occurrence, Kidney toxicity | adjacent | High | Moderate |
Network View
Prototypical Stressors
Life Stage Applicability
Life stage | Evidence |
---|---|
All life stages | Not Specified |
Taxonomic Applicability
Term | Scientific Term | Evidence | Link |
---|---|---|---|
Human, rat, mouse | Human, rat, mouse | High | NCBI |
Sex Applicability
Sex | Evidence |
---|---|
Unspecific | High |
Overall Assessment of the AOP
Domain of Applicability
Essentiality of the Key Events
Evidence Assessment
Concordance of dose-response relationships
This is still a qualitiative description of the pathway. There is at present no quantitative information on dose-response relationships. Experiments are underway to provide quantitative understanding of dose-response relationships and response-response relationships between upstream and downstream KEs.
Temporal concordance among the key events and adverse outcome
The individual KEs are shown to occur prior to or concomitant with the onset of nephrotoxicity.
Strength, consistency, and specificity of association of adverse outcome and initiating event
The scientific evidence on the association between protein alkylation by reactive intermediates and kidney toxicity (AO) is strong and consistent. The MIE is not specific for kidney toxicity and is well established to lead to damage to other organs, whereby the site of toxicity is largely determined by the toxicokinetics of the parent compound or active metabolite.
Biological plausibility, coherence, and consistency of the experimental evidence
The described AOP is biologically plausible, coherent and well supported by experimental data.
Alternative mechanism(s) that logically present themselves and the extent to which they may distract from the postulated AOP
There are no alternative mechanism(s) that logically present themselves, although a contribution of other mechanisms such as generation of oxidative stress to the overall AO is possible.
Uncertainties, inconsistencies and data gaps
This AOP is plausible and consistent with general biological knowledge. However, there is currently little understanding as to which target proteins are critical to toxicity mediated by alkalation damage. Quantitative information on dose response-relationships as well as response-response relationships for upstream and downstream KEs is needed to support its applicability for the development of alternative in vitro tests for nephrotoxicity testing.
Known Modulating Factors
Quantitative Understanding
Quantitative data on KERs between upstream and downstream KE are still lacking.
Considerations for Potential Applications of the AOP (optional)
The described AOP is intended to provide a mechanistic framework for the development of in vitro bioactivity assays capable of predicting quantitative points of departure for safety assessment with regard to nephrotoxicity. Such assays may form part of an integrated testing strategy to reduce the need for repeated dose toxicity studies (e.g. OECD Guideline 407; OECD Guideline 407).
References
1. Birner, G., et al., Metabolism of tetrachloroethene in rats: identification of N epsilon-(dichloroacetyl)-L-lysine and N epsilon-(trichloroacetyl)-L-lysine as protein adducts. Chem Res Toxicol, 1994. 7(6): p. 724-32.
2. Pahler, A., et al., Generation of antibodies to Di- and trichloroacetylated proteins and immunochemical detection of protein adducts in rats treated with perchloroethene. Chem Res Toxicol, 1998. 11(9): p. 995-1004.
3. Kleiner, H.E., et al., Immunochemical detection of quinol--thioether-derived protein adducts. Chem Res Toxicol, 1998. 11(11): p. 1283-90.
4. Lau, S.S., Quinone-thioether-mediated nephrotoxicity. Drug Metab Rev, 1995. 27(1-2): p. 125-41.
5. Tune, B.M., Nephrotoxicity of beta-lactam antibiotics: mechanisms and strategies for prevention. Pediatr Nephrol, 1997. 11(6): p. 768-72.
6. Griffin, R.J. and P.J. Harvison, In vivo metabolism and disposition of the nephrotoxicant N-(3, 5-dichlorophenyl)succinimide in Fischer 344 rats. Drug Metab Dispos, 1998. 26(9): p. 907-13.
7. Groves, C.E., et al., Pentachlorobutadienyl-L-cysteine (PCBC) toxicity: the importance of mitochondrial dysfunction. J Biochem Toxicol, 1991. 6(4): p. 253-60.
8. Chen, Y., et al., Role of mitochondrial dysfunction in S-(1,2-dichlorovinyl)-l-cysteine-induced apoptosis. Toxicol Appl Pharmacol, 2001. 170(3): p. 172-80.
9. Hill, B.A., T.J. Monks, and S.S. Lau, The effects of 2,3,5-(triglutathion-S-yl)hydroquinone on renal mitochondrial respiratory function in vivo and in vitro: possible role in cytotoxicity. Toxicol Appl Pharmacol, 1992. 117(2): p. 165-71.
10. Aleo, M.D., et al., Toxicity of N-(3,5-dichlorophenyl)succinimide and metabolites to rat renal proximal tubules and mitochondria. Chem Biol Interact, 1991. 78(1): p. 109-21.