This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 937
Key Event Title
KE7 : Impaired, Vasodilation
Short name
Biological Context
Level of Biological Organization |
---|
Organ |
Organ term
Organ term |
---|
circulatory system |
Key Event Components
Process | Object | Action |
---|---|---|
vasodilation | blood vessel | abnormal |
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
Hypertension | KeyEvent | Frazer Lowe (send email) | Not under active development | Under Development |
Taxonomic Applicability
Life Stages
Life stage | Evidence |
---|---|
All life stages | High |
Sex Applicability
Term | Evidence |
---|---|
Unspecific | High |
Key Event Description
Vasodilation refers to the widening or increase in the diameter of blood vessels (e.g. large arteries, large veins, small arterioles) that is caused by the relaxation of vascular smooth muscle cells (VSMCs) within the walls of blood vessels, thus increasing blood flow and decreasing arterial blood pressure and heart rate (Siddiqui, 2011). VSMC relaxation is regulated through a number of mechanisms, including cyclic GMP-dependent hyperpolarization and relaxation via nitric oxide (NO), cAMP-dependent hyperpolarization via prostaglandins, and stimulation of potassium channels via endothelial-derived hyperpolarizing factors (Durand and Gutterman, 2013). Under oxidative stress, decreased NO bioavailability results in impaired vasodilation, which is associated with cardiovascular diseases such as hypertension (Silva et al., 2012).
How It Is Measured or Detected
Endothelium-dependent vasodilation can be measured using invasive and non-invasive methods (Raitakari and Celermajer, 2000). For the invasive approach, vasodilation is measured after intra-arterial pharmacologic stimulation with substances that enhance NO release (e.g. acetylcholine, bradykinin). The non-invasive ultrasound-based method evaluates flow-mediated vasodilation (FMD) in the superficial arteries, such as brachial, radial, or femoral vessels.
Guidelines for the measurement of FMD have been published (Corretti et al. 2002).
Domain of Applicability
Vasodilation has been observed in humans, rabbits, mice and rats.
References
Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery
Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery. Journal of the American College of Cardiology, 2002, 39 (2) 257-265
Durand, M.J., and Gutterman, D.D. (2013). Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirc. N. Y. N 1994 20, 239–247.
Raitakari, O.T., and Celermajer, D.S. (2000). Flow-mediated dilatation. Br. J. Clin. Pharmacol. 50, 397–404.
Siddiqui, A. (2011). Effects of Vasodilation and Arterial Resistance on Cardiac Output. J. Clin. Exp. Cardiol. 02.
Silva, B.R., Pernomian, L., and Bendhack, L.M. (2012). Contribution of oxidative stress to endothelial dysfunction in hypertension. Front. Physiol. 3, 441.