This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Event: 979

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Interference, nuclear localization of NFAT

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Interference, nuclear localization of NFAT
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization
Molecular

Cell term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Organ term
immune system

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; https://aopwiki.org/info_pages/2/info_linked_pages/7#List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Process Object Action
genetic interference NFAT protein increased

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE.Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
Immunosuppression KeyEvent Takumi Ohishi (send email) Open for comment. Do not cite WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
Homo sapiens Homo sapiens High NCBI
Mus musculus Mus musculus High NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help
Life stage Evidence
All life stages High

Sex Applicability

An indication of the the relevant sex for this KE. More help
Term Evidence
Unspecific High

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

The nuclear factor of activated T cells (NFAT) is a substrate of calcineurin (CN) (Rao et al. 1997). A NFAT has an N-terminal with a plurality of SP motifs rich in serine and proline, which are controlled by means of phosphorylation and dephosphorylation. There is a nuclear localization signal (NLS) held between these SP regions as well as a nuclear export signal (NES) in the N-terminal adjacent to the SP motifs (Beals et al. 1997, Zhu and McKeon 1999, Serfling et al. 2000). SP motifs ordinarily are phosphorylated, which covers the NLS and leaves the NES exposed, so that NFAT localizes in cytoplasm. When SP motifs are dephosphorylated by activated CN, the NLS is exposed and the NES is covered, thereby promoting nuclear localization of NFAT (Matsuda and Koyasu 2000, Zhu and McKeon 1999). When T-cell activation takes place, T-cell–receptor- mediated stimulus increases the intracellular concentration of calcium and activates a regulatory subunit (CnB), which subsequently induces a catalytic subunit (CnA) phosphatase activation, leading to dephosphorylation of NFAT thereby promoting nuclear localization of NFAT. CNI-immunophilin complexes inhibit CN phosphatase activation, thereby interfering with NFAT nuclear localization (Bhattacharyya et al.2011).

Concentration-dependent reduction of in vitro nuclear localization of NFAT was evident at concentrations from 0.1 nM (Jurkat T cells) or 10nM (human CD4+ T cells) and up to 1 μM (1000 nM) under the conditions of 2 hours treatment (Maguire et al. 2013).

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help

Nuclear translocation of NFAT can be tested by imaging flowcytometer, in which lymphocytes are treated with fluorescence-labeled anti-NFAT antibody and DAPI (nuclear stain) and intracellular distribution of NFAT is analyzed by imaging flowcytometry with image analysis (Maguire O et al. 2013).

Interference with translocation of NFAT to the nucleus can be detected using gel mobility shift assays of nuclear or cytoplasmic extracts electrophoresed with end-labeled NFAT-binding site from human IL-2 enhancer (Flanagan et al. 1991).

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help

NFAT expresses in B cells, mast cells, neutrophils, granulocytes, dendritic cells, macrophages, and natural killer cells as well as T cells from humans, rodents and other mammalian species (Rao et al. 1997).

References

List of the literature that was cited for this KE description. More help
  1. Rao, A., Luo, C., and Hogan, PG. (1997). Transcription factors of the NFAT family: regulation and function. Annual Review of Immunology 15: 707-47.
  2. Beals, C.R., Clipstone, N.A., Ho, S.N. and Crabtree, G.R. (1997). Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes & development 11 (7): 824-34.
  3. Zhu, J. and McKeon, F. (1999). NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature. 398(6724): 256-60.
  4. Serfling, E., Berberich-Siebelt, F., Chuvpilo, S., Jankevics, E., Klein-Hessling, S., Twardzik, T., and Avots, A., (2000). The role of NF-AT transcription factors in T cell activation and differentiation. Biochimica et Biophysica Act 1498 (1): 1-18.
  5. Matsuda, S., Koyasu, S. (2000). A second target of cyclosporin A and FK506. Tanpakushitsu kakusan koso. 45(11): 1823-1831.
  6. Bhattacharyya, S., Deb, J., Patra, A.K., Thuy Pham, D.A., Chen, W., Vaeth, M., Berberich-Siebelt, F., Klein-Hessling, S., Lamperti, E.D., Reifenberg, K., Jellusova, J., Schweizer, A., Nitschke, L., Leich, E., Rosenwald, A., Brunner, C., Engelmann, S., Bommhardt, U., Avots, A., Müller, M.R., Kondo, E. and Serfling, E. (2011). NFATc1 affects mouse splenic B cell function by controlling the calcineurin-NFAT signaling network. The Journal of experimental medicine 208 (4): 823-39.
  7. Flanagan, W.M., Corthésy, B., Bram, R.J. and Crabtree, G.R. (1991). Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352 (6338): 803-7.
  8. Maguire O., Tornatore K.M., O'Loughlin K.L., Venuto R.C., Minderman H.(2013). Nuclear translocation of nuclear factor of activated T cells (NFAT) as a quantitative pharmacodynamic parameter for tacrolimus.