This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Relationship: 1269

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Altered expression of hepatic CAR-dependent genes leads to Increase, cell proliferation (hepatocytes)

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes.Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Constitutive androstane receptor activation leading to hepatocellular adenomas and carcinomas in the mouse and the rat adjacent High Moderate Kristin Lichti-Kaiser (send email) Open for citation & comment Under Review

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
rat Rattus norvegicus High NCBI
mouse Mus musculus High NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Mixed High

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
All life stages Moderate

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

The altered expression of mouse and rat genes that are related to increased cell proliferation will, by definition, produce measurable changes in cell proliferation in hepatocytes (Elcombe et al., 2014; Yang and Wang, 2014). Hepatocytes have the ability to regenerate when properly stimulated, such as following partial hepatectomy. The CAR-responsive genes such as Gadd45b, Ki67 and the Cdc20 are necessary gene targets that are part of this synchronized response that results in progress out of the quiescent cell cycle stage (G0), resulting in DNA replication during S-phase (a measurable marker of cell proliferation), and eventual cell division.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER. For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help
Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

The CAR-mediated changes in expression of pro-proliferative genes such as Gadd45b, Ki67 and Cdc20 and the genomic pathways such as cell proliferation or cell cycle progression have been demonstrated to occur with multiple CAR activators (Currie et al., 2014; Deguchi et al., 2009; Geter et al., 2014; Oshida et al., 2015a; Ross et al., 2010; Tojima et al., 2012), and markers of cell proliferation such as BrdU labeling index or Ki67 labeling index have also been demonstrated to occur in mice and rats exposed to these same CAR activators. It is highly plausible that gene expression changes lead to increased cell proliferation signals in hepatocytes, as genes in the Gadd45 family are known to interact with cyclins, cyclin-dependent kinase inhibitors and p53 to alter progression through the cell cycle (Liebermann and Hoffman, 2008). Other CAR-mediated changes in gene expression such as those related to metabolism enzymes (e.g. CYP2B isoforms) lead to associative events in the liver such as increased CYP2B activity and/or protein, hepatocellular hypertrophy and increase liver weight.

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

One minor uncertainty in this relationship is related to the different time courses of the two linked key events. With most CAR activators, the increase in cell proliferation (e.g. by BrdU, Ki67 or PCNA labeling index) is an early event (days) that is transient when one measures the response across the whole liver. For example, phenobarbital produced an increased BrdU labeling index in B6C3F1 mice that was maximal at 7 days and gradually dissipated at days 14, 21 and 28; no difference was observed vs. control at day 90 (Kolaja et al., 1996a) Phenobarbital in F344 rats produced an increase in labelling index at day 7 that was only marginally affected at day 14 and returned to control levels from day 21 onward (Kolaja et al., 1996a). Currie (Currie et al., 2014) compared cell proliferation by BrdU and cell proliferation gene pathways by IPA. Phenobarbital and the direct CAR activator propiconazole given to male CD-1 mice produced significant changes in the cell cycle/cell proliferation IPA pathways at both 4 and 30 days of treatment, whereas BrdU labeling index was maximal at 1 or 2 days of treatment, with no difference from controls at 14 days and beyond. The work of Kolaja (1996a; 1996b) has demonstrated that the cell proliferation in the liver does persist for longer time intervals in mice, if one examines the response within altered foci in an initiation-promotion model, with 500 ppm dietary phenobarbital as the promoter. Therefore, a genomic response to CAR activators in rodent liver (as a whole) can be measured and shown to produce a sustained response of enhanced signaling for increased cell proliferation, but the downstream key event of increased cell proliferation (as measured via BrdU or Ki67 labeling) is often insufficiently sensitive to detect a sustained difference vs. controls in the whole liver. The time course of these related key events can be very dependent on the zones of the liver examined (periportal, midzonal, centrilobular; Kolaja et al., 1996a), and on the specific CAR activator and the species/strain of rodent that is tested (Elcombe et al., 2014; Huang et al., 2005; Kolaja et al., 1996a).

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help
Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

The pathway leading from CAR-mediated gene expression changes to an increase in cell proliferation (BrdU, PCNA or Ki67 labeling index) has strong evidence indicating it is selectively observed in mice and rats, but not in other mammalian species (Deguchi et al., 2009; Foster, 2000; LeBaron et al., 2013; Parzefall et al., 1991; Plant et al., 1998). Recently a chimeric mouse model that had >90% replacement of mouse hepatocytes with human hepatocytes was used to examine the comparative in vivo effects of 3-5 dietary concentrations of phenobarbital in CD-1 mouse hepatocytes vs. the chimeric human hepatocytes (Yamada et al., 2014). In the liver cells of CD-1 mice after 1 week of treatment, increased mRNA levels of Cyp2b10, Cyp3a11, Ki67 and Gadd45b were observed, along with increased BrdU labeling index. In the human liver cells of chimeric mice, increased mRNA levels of CYP2B and CYP3A were observed, but there were no differences from control for Ki67 and GADD45B mRNA levels nor any increases in BrdU labeling index (Yamada et al., 2014). In summary, a large amount of experimental data including both in vitro and in vivo studies has demonstrated that the downstream key event of increased cell proliferation following treatment with CAR activators occurs selectively in mice and rats, and is correlated with CAR-mediated gene expression changes that reflect pathways of cell cycle control and cell proliferation.

References

List of the literature that was cited for this KER description. More help

Chen, T., Tompkins, L. M., Li, L., Li, H., Kim, G., Zheng, Y. and Wang, H. (2010), A single amino acid controls the functional switch of human constitutive androstane receptor (CAR) 1 to the xenobiotic-sensitive splicing variant CAR3. J Pharmacol Exp Ther 332, 106-15, 10.1124/jpet.109.159210.

Currie, R. A., Peffer, R. C., Goetz, A. K., Omiecinski, C. J. and Goodman, J. I. (2014), Phenobarbital and propiconazole toxicogenomic profiles in mice show major similarities consistent with the key role that constitutive androstane receptor (CAR) activation plays in their mode of action. Toxicology 321, 80-8, 10.1016/j.tox.2014.03.003.

Deguchi, Y., Yamada, T., Hirose, Y., Nagahori, H., Kushida, M., Sumida, K., Sukata, T., Tomigahara, Y., Nishioka, K., Uwagawa, S., Kawamura, S. and Okuno, Y. (2009), Mode of action analysis for the synthetic pyrethroid metofluthrin-induced rat liver tumors: evidence for hepatic CYP2B induction and hepatocyte proliferation. Toxicol Sci 108, 69-80, 10.1093/toxsci/kfp006.