To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:1742

Relationship: 1742

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Inhibition, CHS-1 leads to Decrease, Cuticular chitin content

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
S-adenosylmethionine depletion leading to population decline (1) adjacent You Song (send email) Under development: Not open for comment. Do not cite
Chitin synthase 1 inhibition leading to mortality adjacent Moderate Low Simon Schmid (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
crustaceans Daphnia magna Moderate NCBI
insects insects Moderate NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Unspecific Moderate

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
Larvae High
Juvenile High
Adult Moderate

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

Chitin in the arthropod cuticle is synthesized by the chitin synthase isoform 1 (CHS-1) which spans the plasma membrane on the apical plasma membrane of epithelial cells (Locke and Huie 1979; Binnington 1985; Merzendorfer and Zimoch 2003; Merzendorfer 2006). Since CHS-1 is the enzyme to polymerize chitin from UDP-N-Acetylglucosamine (UDP-GlcNAc) (Merzendorfer 2006), it is solely responsible for the content of chitin in the exoskeleton. Consequently, the inhibition of CHS-1 leads to a decrease in chitin content in the arthropod cuticle.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER.  For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help
Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

The process of chitin synthesis in arthropods is well characterized. Although the exact mechanism of the polymerization reaction remains elusive, CHS-1 is known to be the key enzyme in the biosynthesis of chitin and therefore, responsible for the cuticular chitin content (Merzendorfer and Zimoch 2003; Merzendorfer 2006). Therefore, the biological plausibility of this KER can be regarded as high.

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

The major uncertainty in this KER is the absence of studies which assess both endpoints, the inhibition of the chitin synthase and the decrease in cuticular chitin content after exposure to specific stressors.

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help

CHS is dependent on bivalent ions as cofactor such as Mg2+ or Mn2+ (Merzendorfer 2006). Both low and high levels of Mg2+ inhibited CHS activity in vitro (Zhang and Yan Zhu 2013).

Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help

Due to the lack of studies linking the inhibition of CHS-1 to the decrease in cuticular chitin content, it is not possible to describe the nature of the response-response relationship.

Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help

Due to the lack of studies assessing the inhibition of CHS-1 and the decrease in cuticular chitin content, it is not possible to make a statement on the timescale of the relationship. However, the expression of CHS-1 peaks at the time of ecdysis (Ampasala et al. 2011; Wang et al. 2012), indicating the highest rate of chitin synthesis at this timepoint. Hence it can be assumed that a decrease in chitin content in the newly synthesized cuticle should become apparent shortly after. In studies where CHS-1 was knocked down, chitin contents were assessed after 3 and 7 days and found to be decreased (Arakane et al. 2005, Li et al. 2017, Zhang X. et al. 2010).

Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Upon knockdown of CHS-1 in the salmon louse Lepeophtheirus salmonis, upregulation of the UDP-GlcNAc pyrophosphorylase (UAP), which catalyzes the conversion of GlcNAc to UDP-GlcNAc, was observed (Braden et al. 2020). The knockdown of UAP also led to upregulation of CHS-1 demonstrating a clear dependence of the two enzymes. Most likely, the upregulation of UAP is a compensatory mechanism with the goal to restore homeostasis in absence of CHS-1. The exact regulation of the feedback, however, remains to be investigated.

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

Taxonomic: Likely, this KER is likely applicable to the whole phylum of arthropods as they all depend on the synthesis of chitin.

Life stage: This KER is applicable for organisms synthesizing chitin in order to grow and develop, namely larval stages of insects and all life stages of crustaceans and arachnids.

Sex: This KER is applicable to all sexes.

Chemical: Substances inducing both, the inhibition of CHS-1 and the decrease in cuticular chitin content are of the family of pyrimidine nucleosides (e.g. polyoxin D, polyoxin B and nikkomycin Z) (Gijswijt et al. 1979; Cohen and Casida 1982; Turnbull and Howells 1982; Calcott and Fatig 1984; Kuwano and Cohen 1984; Cohen and Casida 1990; Zhang and Yan Zhu 2013; Zhuo et al. 2014; Osada 2019). The phthalimide captan was also shown to induce CHS-1 inhibition and a decrease in cuticular chitin content (Cohen and Casida 1982; Gelman and Borkovec 1986). However, studies assessing both endpoints in sequence are lacking.

References

List of the literature that was cited for this KER description. More help

Ampasala DR, Zheng S, Zhang D, Ladd T, Doucet D, Krell PJ, Retnakaran A, Feng Q. 2011. An epidermis-specific chitin synthase cDNA in Choristoneura fumiferana: Cloning, characterization, developmental and hormonal-regulated expression. Arch Insect Biochem Physiol. 76(2):83–96. doi:10.1002/arch.20404.

Arakane, Y.; Muthukrishnan, S.; Kramer, K. J.; Specht, C. A.; Tomoyasu, Y.; Lorenzen, M. D.; Kanost, M.; Beeman, R. W. The Tribolium Chitin Synthase Genes TcCHS1 and TcCHS2 Are Specialized for Synthesis of Epidermal Cuticle and Midgut Peritrophic Matrix. Insect Mol. Biol. 2005, 14 (5), 453–463. https://doi.org/10.1111/j.1365-2583.2005.00576.x.

Binnington KC. 1985. Ultrastructural changes in the cuticle of the sheep blowfly, Lucilia, induced by certain insecticides and biological inhibitors. Tissue Cell. 17(1):131–140. doi:10.1016/0040-8166(85)90021-7.

Braden L, Michaud D, Igboeli OO, Dondrup M, Hamre L, Dalvin S, Purcell SL, Kongshaug H, Eichner C, Nilsen F, et al. 2020. Identification of critical enzymes in the salmon louse chitin synthesis pathway as revealed by RNA interference-mediated abrogation of infectivity. Int J Parasitol. 50(10–11):873–889. doi:10.1016/j.ijpara.2020.06.007. https://doi.org/10.1016/j.ijpara.2020.06.007.

Calcott PH, Fatig RO. 1984. Inhibition of Chitin metabolism by Avermectin in susceptible Organisms. J Antibiot (Tokyo). 37(3):253–259. doi:10.7164/antibiotics.37.253.

Cohen E, Casida JE. 1982. Properties and inhibition of insect integumental chitin synthetase. Pestic Biochem Physiol. 17(3):301–306. doi:10.1016/0048-3575(82)90141-9.

Cohen E, Casida JE. 1990. Insect and Fungal Chitin Synthetase Activity: Specificity of Lectins as Enhancers and Nucleoside Peptides as Inhibitors. Pestic Biochem Physiol. 37(3):249–253. doi:10.1016/0048-3575(90)90131-K.

Gelman DB, Borkovec AB. 1986. The pharate adult clasper as a tool for measuring chitin synthesis and for identifying new chitin synthesis inhibitors. Comp Biochem Physiol Part C, Comp. 85(1):193–197. doi:10.1016/0742-8413(86)90073-3.

Gijswijt MJ, Deul DH, de Jong BJ. 1979. Inhibition of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in action in Pieris brassicae (L.) with Polyoxin D. Pestic Biochem Physiol. 12(1):87–94. doi:10.1016/0048-3575(79)90098-1.

Kuwano E, Cohen E. 1984. The use of a Tribolium chitin synthetase assay in studying the effects of benzimidazoles with a terpene moiety and related compounds. Agric Biol Chem. 48(6):1617–1620. doi:10.1080/00021369.1984.10866362.

Li, T.; Chen, J.; Fan, X.; Chen, W.; Zhang, W. MicroRNA and DsRNA Targeting Chitin Synthase A Reveal a Great Potential for Pest Management of the Hemipteran Insect Nilaparvata Lugens. Pest Manag. Sci. 2017, 73 (7), 1529–1537. https://doi.org/10.1002/ps.4492.

Locke M, Huie P. 1979. Apolysis and the Turnover of Plasmamembrane Plaques during Cuticle formation in an Insect. Tissue Cell. 11(2):277–291. doi:10.1016/0040-8166(79)90042-9.

Merzendorfer H. 2006. Insect chitin synthases: A review. J Comp Physiol B Biochem Syst Environ Physiol. doi:10.1007/s00360-005-0005-3.

Merzendorfer H, Zimoch L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol. 206(24):4393 LP – 4412. doi:10.1242/jeb.00709. http://jeb.biologists.org/content/206/24/4393.abstract.

Osada H. 2019. Discovery and applications of nucleoside antibiotics beyond polyoxin. J Antibiot (Tokyo). 72(12):855–864. doi:10.1038/s41429-019-0237-1. http://dx.doi.org/10.1038/s41429-019-0237-1.

Turnbull IF, Howells AJ. 1982. Effects of several larvicidal compounds on chitin biosynthesis by isolated larval integuments of the sheep blowfly Lucilia cuprina. Aust J Biol Sci. 35(5):491–504. doi:10.1071/BI9820491.

Wang Y, Fan HW, Huang HJ, Xue J, Wu WJ, Bao YY, Xu HJ, Zhu ZR, Cheng JA, Zhang CX. 2012. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochem Mol Biol. 42(9):637–646. doi:10.1016/j.ibmb.2012.04.009. http://dx.doi.org/10.1016/j.ibmb.2012.04.009.

Zhang, X.; Zhang, J.; Zhu, K. Y. Chitosan/Double-Stranded RNA Nanoparticle-Mediated RNA Interference to Silence Chitin Synthase Genes through Larval Feeding in the African Malaria Mosquito (Anopheles Gambiae). Insect Mol. Biol. 2010, 19 (5), 683–693. https://doi.org/10.1111/j.1365-2583.2010.01029.x.

Zhang X, Yan Zhu K. 2013. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, Anopheles gambiae. Insect Sci. 20(2):158–166. doi:10.1111/j.1744-7917.2012.01568.x.

Zhuo W, Fang Y, Kong L, Li X, Sima Y, Xu S. 2014. Chitin synthase A: A novel epidermal development regulation gene in the larvae of Bombyx mori. Mol Biol Rep. 41(7):4177–4186. doi:10.1007/s11033-014-3288-1.