This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Event: 1523

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Decrease, Cuticular chitin content

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Decrease, Cuticular chitin content
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization
Tissue

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Organ term
cuticle

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; https://aopwiki.org/info_pages/2/info_linked_pages/7#List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Process Object Action
cuticle development cuticle decreased

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE.Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
SAM depletion leading to population decline (2) KeyEvent You Song (send email) Under development: Not open for comment. Do not cite
SAM depletion leading to population decline (1) KeyEvent You Song (send email) Under development: Not open for comment. Do not cite
CHS-1 inhibition leading to mortality KeyEvent Simon Schmid (send email) Open for citation & comment WPHA/WNT Endorsed
SUR binding leading to mortality KeyEvent Simon Schmid (send email) Under development: Not open for comment. Do not cite Under Development

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
Pieris brassicae Pieris brassicae High NCBI
Lucilia cuprina Lucilia cuprina High NCBI
Bombyx mori Bombyx mori High NCBI
Artemia salina Artemia salina High NCBI
Ostrinia nubilalis Ostrinia nubilalis High NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help
Life stage Evidence
Larvae High
Juvenile High
Adult Moderate

Sex Applicability

An indication of the the relevant sex for this KE. More help
Term Evidence
Unspecific Moderate

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

This key event describes the decrease in cuticular chitin content. Chitin is a major part of the arthropod cuticle and therefore also responsible for its integrity (Reynolds 1987; Muthukrishnan et al. 2012). The cuticle is the exoskeleton of arthropods and has manifold functions, it protects organisms from predators, loss of water, acts as a physical barrier against microbial pathogens and provides support for muscular function (Vincent and Wegst 2004). Hence, cuticular chitin is also indispensable for the development of arthropods, as an immaculate cuticle is required for proper molting and therefore also for the growth of an organism.  

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help

Several ways to determine cuticular chitin are described in the literature. Some of them are based on the determination of amino sugars after digestion or hydrolysis of chitin. For example, after the digestion of chitin by a bacterial chitinase, the N-Acetylclucosamine (GlcNAc) amount can be determined colorimetrically by a modified Morgan-Elson assay (Reissig et al. 1955; Arakane et al. 2005). Alternatively, one can also quantify glucosamine colorimetrically after deacetylation and hydrolysis of chitin (Lehmann and White 1975; Zhang and Zhu 2006). There also exists an approach based on the detection of fluorescence after staining with calcofluor white. In this assay, no treatment of the samples is necessary, the detection is carried out in homogenates of the respective organisms as calcofluor white directly binds to chitin (Henriques et al. 2020). Chitin can also be quantified using radioactively labelled precursors (e.g. 14C-UDP-GlcNAc) which are incorporated into in vitro cultured integument pieces or into the cuticle of whole organisms (Gijswijt et al. 1979; Turnbull and Howells 1982; Calcott and Fatig 1984; Gelman and Borkovec 1986). Another possibility is to use the non-radioactive assay developed to measure chitin synthase activity (Lucero et al. 2002; Zhang and Yan Zhu 2013). Instead of adding an enzyme extract and chitin precursors to the reaction, one could simply add homogenized chitin containing material to the reaction to quantify its chitin content.

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help

Taxonomic: Effect data for the occurrence of this KE exist from Pieris brassicae, Lucilia cuprina, Bombyx mori, Artemia salina and Ostrinia nubilalis, defining its taxonomic applicability. Most likely, this KE is applicable to the whole phylum of arthropods, as they all rely on chitin as part of their exoskeleton.

Life stage: This KE is applicable for organisms synthesizing chitin in order to grow and develop, namely larval stages of insects and all life stages of crustaceans and arachnids.

Sex: This KE is applicable to all sexes.

Chemical: Substances known decrease the cuticular chitin content are of the family of pyrimidine nucleosides (e.g. polyoxin D and nikkomycin Z) (Gijswijt et al. 1979; Turnbull and Howells 1982; Calcott and Fatig 1984; Zhuo et al. 2014; Osada 2019). There also exists evidence for phthalimides (captan, captafol and folpet) to to decrease the cuticular chitin content in vitro (Gelman and Borkovec 1986). However, as these substances are known to covalently bind to thiol groups in proteins (Lukens and Sisler 1958), it is not clear if the inhibition is due to specific CHS-1 inhibition or due to unspecific protein binding.

References

List of the literature that was cited for this KE description. More help

Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW. 2005. The Tribolium  chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol. 14(5):453–463. doi:10.1111/j.1365-2583.2005.00576.x.

Calcott PH, Fatig RO. 1984. Inhibition of Chitin metabolism by Avermectin in susceptible Organisms. J Antibiot (Tokyo). 37(3):253–259. doi:10.7164/antibiotics.37.253.

Clarke KU. 1957. On the Increase in Linear Size During Growth in Locusta Migratoria L. Proc R Entomol Soc London Ser A, Gen Entomol. 32(1–3):35–39. doi:10.1111/j.1365-3032.1957.tb00361.x.

Dall W, Smith DM, Press B. 1978. Water uptake at ecdysis in the western rock lobster. J Exp Mar Bio Ecol. 35(1960). doi:10.1016/0022-0981(78)90074-6.

deFur PL, Mangum CP, McMahon BR. 1985. Cardiovascular and Ventilatory Changes During Ecdysis in the Blue Crab Callinectes Sapidus Rathbun. J Crustac Biol. 5(2):207–215. doi:10.2307/1547867.

Ewer J. 2005. How the ecdysozoan changed its coat. PLoS Biol. 3(10):1696–1699. doi:10.1371/journal.pbio.0030349.

Gelman DB, Borkovec AB. 1986. The pharate adult clasper as a tool for measuring chitin synthesis and for identifying new chitin synthesis inhibitors. Comp Biochem Physiol Part C, Comp. 85(1):193–197. doi:10.1016/0742-8413(86)90073-3.

Gijswijt MJ, Deul DH, de Jong BJ. 1979. Inhibition of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in action in Pieris brassicae (L.) with Polyoxin D. Pestic Biochem Physiol. 12(1):87–94. doi:10.1016/0048-3575(79)90098-1.

Henriques BS, Garcia ES, Azambuja P, Genta FA. 2020. Determination of Chitin Content in Insects: An Alternate Method Based on Calcofluor Staining. Front Physiol. 11(February):1–10. doi:10.3389/fphys.2020.00117.

Lee RM. 1961. The variation of blood volume with age in the desert locust (Schistocerca gregaria Forsk.). J Insect Physiol. 6(1):36–51. doi:10.1016/0022-1910(61)90090-7.

Lehmann PF, White LO. 1975. Chitin Assay Used to Demonstrate Renal Localization and Cortisone-Enhanced Growth of Aspergillus fumigatus Mycelium in Mice. Infect Immun. 12(5):987–992.

Lucero HA, Kuranda MJ, Bulik DA. 2002. A nonradioactive, high throughput assay for chitin synthase activity. Anal Biochem. 305(1):97–105. doi:10.1006/abio.2002.5594.

Lukens RJ, Sisler HD. 1958. 2-Thiazolidinethione-4-carboxylic acid from the reaction of captan with cysteine. Science (80- ). 127(3299):650. doi:10.1126/science.127.3299.650.

Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ. 2012. Chitin Metabolism in Insects. Elsevier B.V. http://dx.doi.org/10.1016/B978-0-12-384747-8.10007-8.

Osada H. 2019. Discovery and applications of nucleoside antibiotics beyond polyoxin. J Antibiot (Tokyo). 72(12):855–864. doi:10.1038/s41429-019-0237-1. http://dx.doi.org/10.1038/s41429-019-0237-1.

Reissig JL, Strominger JL, Leloir LF. 1955. A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem.:959–966.

Reynolds SE. 1987. The cuticle, growth and moulting in insects: The essential background to the action of acylurea insecticides. Pestic Sci. 20(2):131–146. doi:10.1002/ps.2780200207.

Turnbull IF, Howells AJ. 1982. Effects of several larvicidal compounds on chitin biosynthesis by isolated larval integuments of the sheep blowfly Lucilia cuprina. Aust J Biol Sci. 35(5):491–504. doi:10.1071/BI9820491.

Vincent JFV, Wegst UGK. 2004. Design and mechanical properties of insect cuticle. Arthropod Struct Dev. 33(3):187–199. doi:10.1016/j.asd.2004.05.006.

Zhang J, Zhu KY. 2006. Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in Anopheles quadrimaculatus exposed to diflubenzuron. Insect Biochem Mol Biol. 36(9):712–725. doi:10.1016/j.ibmb.2006.06.002.

Zhang X, Yan Zhu K. 2013. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, Anopheles gambiae. Insect Sci. 20(2):158–166. doi:10.1111/j.1744-7917.2012.01568.x.

Zhuo W, Fang Y, Kong L, Li X, Sima Y, Xu S. 2014. Chitin synthase A: A novel epidermal development regulation gene in the larvae of Bombyx mori. Mol Biol Rep. 41(7):4177–4186. doi:10.1007/s11033-014-3288-1.