This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Relationship: 2002

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Impaired IL-1R1 signaling leads to Inhibition, Nuclear factor kappa B (NF-kB)

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes.Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Impaired IL-1R1 signaling leading to Impaired T-Cell Dependent Antibody Response adjacent High Moderate Takao Ashikaga (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
Homo sapiens Homo sapiens High NCBI
Mus musculus Mus musculus High NCBI
Rattus norvegicus Rattus norvegicus High NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Unspecific High

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
All life stages High

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

After binding of IL-1 or IL-1 to IL-1R, IL-1 and IL-1R1 facilitates recruitment of IL-1RacP. Then this trimeric complex rapidly assembles two intracellular signaling proteins, myeloid differentiation primary response gene 88 (MYD88) and interleukin-1 receptor–activated protein kinase (IRAK) 4. IL-1, IL-1RI, IL-RAcP, MYD88, and IRAK4 form a stable IL-1–induced first signaling module. The binding of MyD88 triggers a cascade of kinases that produce a strong pro-inflammatory signal leading to activation of NF-κB.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER. For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help

Mice lacking MYD88 or IRAK4 show severe defects in IL-1 signaling (Adachi et al., 1998; Suzuki et al., 2002). In the cell culture, lacking MYD88 show a block of NF-κB activation by IL-1 (Medzhitov et al., 1998). MyD88 can strongly activate an AP-1 and this activity is inhibited by dominant-negative TRAF6; therefore, MyD88 and TRAF6 are involved in IL-1R-mediated NF-κB activation, and both activate AP-1 (Medzhitov et al., 1998). Similarly, humans with mutations in the IRAK4 gene have defects in IL-1RI and Toll-like receptor (TLR) signaling (Picard et al., 2003).

Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

The initial step in IL-1 signal transduction is a ligand-induced conformational change in the first extracellular domain of the IL-1RI that facilitates recruitment of IL-1RacP (Cavalli et al., 2015). Through conserved cytosolic regions called Toll- and IL-1R–like (TIR) domains (Radons et al., 2003), the trimeric complex rapidly assembles two intracellular signaling proteins, myeloid differentiation primary response gene 88 (MYD88) and interleukin-1 receptor–activated protein kinase (IRAK) 4 (Brikos et al., 2007; Li et al., 2002). IL-1, IL-1RI, IL-RAcP, MYD88, and IRAK4 form a stable IL-1–induced first signaling module. The binding of MyD88 triggers a cascade of kinases that produce a strong pro-inflammatory signal leading to activation of NF-κB reviewed by (Brikos et al., 2007; Weber, Wasiliew and Kracht, 2010).

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help

IL-1Ra blocks IL-1 signaling:

Suppression of IL-1-induced IL-1, TNFa, or IL-6 synthesis was dose-dependent (P ≦ .0001). At a twofold molar excess, IL-lra inhibited IL-1-induced IL-1 or TNFa synthesis by 50% (P < .01); an equimolar concentration of IL-lra inhibited synthesis of these two cytokines by over 20% (P < .05). A 10-fold molar excess of IL-lra over IL-lb reduced IL-lb-induced IL-la by 95% (P = .01) and IL-la-induced IL-1b by 73% (P < .01). In elutriated monocytes, a 10-fold molar excess of IL-lra reduced IL-lb-induced IL-la by 82% (P < .05), TNFa by 64% (P = .05), and IL-6 by 47% (P < .05). (Granowitz et al., 1992)

Rilonacept (IL-1 Trap, Arcalyst) blocks IL-1 signaling:

The titration curve of IL-1 trap in the presence of 10 pM IL-1β shows an IC50 of 6.5 pM, which corresponds to a calculated KD of 1.5 pM (This affinity is 100 times higher than that of the soluble single component receptor IL-1RI (Economides et al., 2003).

Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

References

List of the literature that was cited for this KER description. More help

Adachi, O., Kawai, T., Takeda, K., et al. (1998), Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9: 143-150,

Alten, R., Gram, H., Joosten, L.A., et al. (2008), The human anti-IL-1 beta monoclonal antibody ACZ885 is effective in joint inflammation models in mice and in a proof-of-concept study in patients with rheumatoid arthritis. Arthritis Res Ther 10: R67, 10.1186/ar2438

Arend, W.P., Welgus, H.G., Thompson, R.C., et al. (1990), Biological properties of recombinant human monocyte-derived interleukin 1 receptor antagonist. J Clin Invest 85: 1694-1697, 10.1172/jci114622

Dhimolea, E. (2010), Canakinumab. MAbs 2: 3-13,

Dripps, D.J., Brandhuber, B.J., Thompson, R.C., et al. (1991), Interleukin-1 (IL-1) receptor antagonist binds to the 80-kDa IL-1 receptor but does not initiate IL-1 signal transduction. J Biol Chem 266: 10331-10336,

Economides, A.N., Carpenter, L.R., Rudge, J.S., et al. (2003), Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat Med 9: 47-52, 10.1038/nm811

Granowitz, E.V., Clark, B.D., Vannier, E., et al. (1992), Effect of interleukin-1 (IL-1) blockade on cytokine synthesis: I. IL-1 receptor antagonist inhibits IL-1-induced cytokine synthesis and blocks the binding of IL-1 to its type II receptor on human monocytes. Blood 79: 2356-2363,

Lye, E., Dhanji, S., Calzascia, T., et al. (2008), IRAK-4 kinase activity is required for IRAK-4-dependent innate and adaptive immune responses. Eur J Immunol 38: 870-876, 10.1002/eji.200737429

Lye, E., Mirtsos, C., Suzuki, N., et al. (2004), The role of interleukin 1 receptor-associated kinase-4 (IRAK-4) kinase activity in IRAK-4-mediated signaling. J Biol Chem 279: 40653-40658, 10.1074/jbc.M402666200

McIntyre, K.W., Stepan, G.J., Kolinsky, K.D., et al. (1991), Inhibition of interleukin 1 (IL-1) binding and bioactivity in vitro and modulation of acute inflammation in vivo by IL-1 receptor antagonist and anti-IL-1 receptor monoclonal antibody. J Exp Med 173: 931-939,

Medzhitov, R., Preston-Hurlburt, P., Kopp, E., et al. (1998), MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2: 253-258,

Picard, C., Puel, A., Bonnet, M., et al. (2003), Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299: 2076-2079, 10.1126/science.1081902

Shuck, M.E., Eessalu, T.E., Tracey, D.E., et al. (1991), Cloning, heterologous expression and characterization of murine interleukin 1 receptor antagonist protein. Eur J Immunol 21: 2775-2780, 10.1002/eji.1830211119

Suzuki, N., Suzuki, S., Duncan, G.S., et al. (2002), Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416: 750-756, 10.1038/nature736