This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Relationship: 32

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Agonism, Androgen receptor leads to Reduction, Testosterone synthesis by ovarian theca cells

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes.Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Androgen receptor agonism leading to reproductive dysfunction (in repeat-spawning fish) non-adjacent Moderate Low Dan Villeneuve (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
fathead minnow Pimephales promelas High NCBI
Fundulus heteroclitus Fundulus heteroclitus Moderate NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Female High

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
Adult, reproductively mature High

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

At present, a direct structural/functional linkage between androgen receptor agonism and reduced testosterone production by ovarian theca cells is not known.  This linkage is thought to operate indirectly through endocrine feedback along the hypothalamic-pituitary-gonadal axis. Consequently, the relationship is supported primarily via association/correlation.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER. For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help
Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

Synthesis of the steroidogenic enzymes that catalyze the formation of testosterone from cholesterol as a precursor is stimulated by gonadotropins, particulary luteinizing hormone, whose synthesis and secretion are in turn regulated by gonadotropin releasing hormone (GnRH) released from the hypothalamus (Payne and Hales 2004; Norris 2007; Miller 1988). Negative feedback of circulating androgens (e.g., testosterone) on GnRH release from the hypothalamus and/or gonadotropin release from the pituitary is a well established physiological phenomenon in vertebrate endocrinology (Norris 2007). While similar processes of negative feedback of sex steroids on gonadotropin expression and release have been established in fish (Levavi-Sivan et al. 2010), there are many remaining uncertainties about the exact mechanisms through which feedback takes place in fish as well as other vertebrates. For example, feedback is thought to involve a complex interplay of neurotransmitter signaling, kisspeptins, and the follistatin/inhibin/activin system (Trudeau et al. 2000; Trudeau 1997; Oakley et al. 2009; Cheng et al. 2007). In addition, the nature of the feedback produced by androgens is dependent on the concentration, form of the androgen (e.g., aromatizable versus non-aromatizable), life-stage and likely species (Habibi and Huggard 1998; Trudeau et al. 2000; Gopurappilly et al. 2013). At present, such negative feedback responses in vivo provide a biologically plausible connection between androgen receptor agonism and reducted testosterone production in ovarian theca cells, but uncertainty regarding the details of the underlying biology and the relevant applicability domain remain.

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

See biological plausibility section above regarding current uncertainties in the mechanisms through which AR agonists may reduce gonadotropin secretion.

  • Rutherford et al. (2015) reported an increase in plasma T concentrations in female and no change in gonadal T production in Fundulus heteroclitus following 14 d of exposure to 100 ug/L 5alpha-dihydrotestosterone.
  •  

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help
Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

This KER is potentially relevant to sexually mature female vertebrates and amphioxus. It is not relevant to invertebrates. 

  • Androgen receptor orthologs are primarily limited to vertebrates (Baker 1997; Thornton 2001; Eick and Thornton 2011; Markov and Laudet 2011). 
  • Cytochrome P45011a (Cyp11a), a rate limiting enzyme for the production of testosterone, is specific to vertebrates and amphioxus (Markov et al. 2009; Baker et al. 2011; Payne and Hales, 2004).
  • Cyp11a does not occur in invertebrates, as a result, they do not synthesize testosterone, nor other steroid intermediates required for testosterone synthesis (Markov et al. 2009; Payne and Hales, 2004). 

References

List of the literature that was cited for this KER description. More help
  •  
  • Baker ME. 1997. Steroid receptor phylogeny and vertebrate origins. Molecular and cellular endocrinology 135(2): 101-107.
  • Baker ME. 2011. Origin and diversification of steroids: Co-evolution of enzymes and nuclear receptors. Mol Cell Endocrinol 334: 14-20.
  • Cheng GF, Yuen CW, Ge W. 2007. Evidence for the existence of a local activin follistatin negative feedback loop in the goldfish pituitary and its regulation by activin and gonadal steroids. The Journal of endocrinology 195(3): 373-384.
  • Eick GN, Thornton JW. 2011. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Molecular and cellular endocrinology 334(1-2): 31-38.
  • Ekman DR, Villeneuve DL, Teng Q, Ralston-Hooper KJ, Martinović-Weigelt D, Kahl MD, Jensen KM, Durhan EJ, Makynen EA, Ankley GT, Collette TW. Use of gene expression, biochemical and metabolite profiles to enhance exposure and effects assessment of the model androgen 17β-trenbolone in fish. Environ Toxicol Chem. 2011 Feb;30(2):319-29. doi: 10.1002/etc.406.
  • ​​Ankley GT, Jensen KM, Makynen EA, Kahl MD, Korte JJ, Hornung MW, Henry TR, Denny JS, Leino RL, Wilson VS, Cardon MC, Hartig PC, Gray LE. Effects of the androgenic growth promoter 17-beta-trenbolone on fecundity and reproductive endocrinology of the fathead minnow. Environ Toxicol Chem. 2003 Jun;22(6):1350-60.
  • Glinka CO, Frasca S Jr, Provatas AA, Lama T, DeGuise S, Bosker T. The effects of model androgen 5α-dihydrotestosterone on mummichog (Fundulus heteroclitus) reproduction under different salinities. Aquat Toxicol. 2015 Aug;165:266-76. doi: 10.1016/j.aquatox.2015.05.019.
  • Gopurappilly R, Ogawa S, Parhar IS. 2013. Functional significance of GnRH and kisspeptin, and their cognate receptors in teleost reproduction. Frontiers in endocrinology 4: 24.
  • Habibi HR, Huggard DL. 1998. Testosterone regulation of gonadotropin production in goldfish. Comparative biochemistry and physiology Part C, Pharmacology, toxicology & endocrinology 119(3): 339-344.
  • Jensen KM, Makynen EA, Kahl MD, Ankley GT. Effects of the feedlot contaminant 17alpha-trenbolone on reproductive endocrinology of the fathead minnow. Environ Sci Technol. 2006 May 1;40(9):3112-7.
  • LaLone CA, Villeneuve DL, Cavallin JE, Kahl MD, Durhan EJ, Makynen EA, Jensen KM, Stevens KE, Severson MN, Blanksma CA, Flynn KM, Hartig PC, Woodard JS, Berninger JP, Norberg-King TJ, Johnson RD, Ankley GT. Cross-species sensitivity to a novel androgen receptor agonist of potential environmental concern, spironolactone. Environ Toxicol Chem. 2013 Nov;32(11):2528-41. doi: 10.1002/etc.2330.
  • Levavi-Sivan B, Bogerd J, Mananos EL, Gomez A, Lareyre JJ. 2010. Perspectives on fish gonadotropins and their receptors. General and comparative endocrinology 165(3): 412-437.
  • Li Z, Kroll KJ, Jensen KM, Villeneuve DL, Ankley GT, Brian JV, Sepúlveda MS, Orlando EF, Lazorchak JM, Kostich M, Armstrong B, Denslow ND, Watanabe KH. A computational model of the hypothalamic: pituitary: gonadal axis in female fathead minnows (Pimephales promelas) exposed to 17α-ethynylestradiol and 17β-trenbolone. BMC Syst Biol. 2011 May 5;5:63. doi: 10.1186/1752-0509-5-63.
  • Markov GV, Laudet V. 2011. Origin and evolution of the ligand-binding ability of nuclear receptors. Molecular and cellular endocrinology 334(1-2): 21-30.
  • Markov GV, Tavares R, Dauphin-Villemant C, Demeneix BA, Baker ME, Laudet V. Independent elaboration of steroid hormone signaling pathways in metazoans. Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11913-8. doi: 10.1073/pnas.0812138106.
  • Miller WL. 1988. Molecular biology of steroid hormone synthesis. Endocrine reviews 9(3): 295-318.
  • Norris DO. 2007. Vertebrate Endocrinology. Fourth ed. New York: Academic Press.
  • Oakley AE, Clifton DK, Steiner RA. 2009. Kisspeptin signaling in the brain. Endocrine reviews 30(6): 713-743.
  • Payne AH, Hales DB. 2004. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocrine reviews 25(6): 947-970.
  • Rutherford R, Lister A, Hewitt LM, MacLatchy D. Effects of model aromatizable (17α-methyltestosterone) and non-aromatizable (5α-dihydrotestosterone) androgens on the adult mummichog (Fundulus heteroclitus) in a short-term reproductive endocrine bioassay. Comp Biochem Physiol C Toxicol Pharmacol. 2015 Apr;170:8-18. doi: 10.1016/j.cbpc.2015.01.004.
  • Sharpe RL, MacLatchy DL, Courtenay SC, Van Der Kraak GJ. Effects of a model androgen (methyl testosterone) and a model anti-androgen (cyproterone acetate) on reproductive endocrine endpoints in a short-term adult mummichog (Fundulus heteroclitus) bioassay. Aquat Toxicol. 2004 Apr 28;67(3):203-15.
  • Thornton JW. 2001. Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proceedings of the National Academy of Sciences of the United States of America 98(10): 5671-5676.
  • Trudeau VL, Spanswick D, Fraser EJ, Lariviére K, Crump D, Chiu S, et al. 2000. The role of amino acid neurotransmitters in the regulation of pituitary gonadotropin release in fish. Biochemistry and Cell Biology 78: 241-259.
  • Trudeau VL. 1997. Neuroendocrine regulation of gonadotropin II release and gonadal growth in the goldfish, Carassius auratus. Reviews of Reproduction 2: 55-68.