To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:362

Relationship: 362

Title

The title of the KER should clearly define the two KEs being considered and the sequential relationship between them (i.e., which is upstream and which is downstream). Consequently all KER titles take the form “upstream KE leads to downstream KE”.  More help

Increased, Intracellular Calcium overload leads to N/A, Mitochondrial dysfunction 1

Upstream event
Upstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help
Downstream event
Downstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

This table is automatically generated upon addition of a KER to an AOP. All of the AOPs that are linked to this KER will automatically be listed in this subsection. Clicking on the name of the AOP in the table will bring you to the individual page for that AOP. More help
AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Binding of agonists to ionotropic glutamate receptors in adult brain causes excitotoxicity that mediates neuronal cell death, contributing to learning and memory impairment. adjacent High Moderate Anna Price (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Select one or more structured terms that help to define the biological applicability domain of the KER. In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER. Authors can indicate the relevant taxa for this KER in this subsection. The process is similar to what is described for KEs (see pages 30-31 and 37-38 of User Handbook) More help

Sex Applicability

Authors can indicate the relevant sex for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of the User Handbook). More help

Life Stage Applicability

Authors can indicate the relevant life stage for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of User Handbook). More help

Key Event Relationship Description

Provide a brief, descriptive summation of the KER. While the title itself is fairly descriptive, this section can provide details that aren’t inherent in the description of the KEs themselves (see page 39 of the User Handbook). This description section can be viewed as providing the increased specificity in the nature of upstream perturbation (KEupstream) that leads to a particular downstream perturbation (KEdownstream), while allowing the KE descriptions to remain generalised so they can be linked to different AOPs. The description is also intended to provide a concise overview for readers who may want a brief summation, without needing to read through the detailed support for the relationship (covered below). Careful attention should be taken to avoid reference to other KEs that are not part of this KER, other KERs or other AOPs. This will ensure that the KER is modular and can be used by other AOPs. More help

One of the mitochondrial functions is to buffer intracellular Ca2+ levels facilitating the maintenance of Ca2+ homeostasis in the cell. In the case of Ca2+ overload, mitochondria are not able to buffer the excess of Ca2+ that leads to mitochondrial dysfunction measured by the increased generation of reactive oxygen species (ROS), triggering mitochondrial permeability transition pore opening (Choi et al.,2013) and reduced ATP production (reviewed in Gleichmann and Mattson, 2011).

Evidence Supporting this KER

Assembly and description of the scientific evidence supporting KERs in an AOP is an important step in the AOP development process that sets the stage for overall assessment of the AOP (see pages 49-56 of the User Handbook). To do this, biological plausibility, empirical support, and the current quantitative understanding of the KER are evaluated with regard to the predictive relationships/associations between defined pairs of KEs as a basis for considering WoE (page 55 of User Handbook). In addition, uncertainties and inconsistencies are considered. More help
Biological Plausibility
Define, in free text, the biological rationale for a connection between KEupstream and KEdownstream. What are the structural or functional relationships between the KEs? For example, there is a functional relationship between an enzyme’s activity and the product of a reaction it catalyses. Supporting references should be included. However, it is recognised that there may be cases where the biological relationship between two KEs is very well established, to the extent that it is widely accepted and consistently supported by so much literature that it is unnecessary and impractical to cite the relevant primary literature. Citation of review articles or other secondary sources, like text books, may be reasonable in such cases. The primary intent is to provide scientifically credible support for the structural and/or functional relationship between the pair of KEs if one is known. The description of biological plausibility can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured (see page 40 of the User Handbook for further information).   More help

There is functional and structural mechanistic understanding supporting the relationship between KE "Ca2+ influx, increased" and KE "Mitochondrial dysfunction".

The increase in cytoplasmic Ca2+ can cause the activation of plasma membrane and endoplasmic reticulum (ER) Ca2+-ATPases that results in higher ATP demand. At the same time elevated Ca2+ can cause reduced levels of ATP by the direct uptake of the cation into the matrix that utilizes the proton circuit and directly competes with mitochondrial ATP synthesis (reviewed in Nicholls, 2009).

Ca2+ overload besides of being detrimental to mitochondrial energy production can also induce mitochondrial ROS generation. A number of possible mechanisms have been suggested by which Ca2+ overload can increase ROS production including: 1) stimulated increase of metabolic rate by Ca2+, 2) stimulated nitric oxide production by Ca2+, 3) Ca2+ induced cytochrome c dissociation, 4) Ca2+ induced cardiolipin peroxidation, 5) Ca2+ induced mitochondrial permeability transition pore (MPTP)opening with release of cytochrome c (leading to apoptosome formation and caspase-3 activation)and apoptosis inducing factor (AIF), decreased level of reduced glutathione (GSH), the antioxidative enzymes, and 6) Ca2+-calmodulin dependent protein kinase activation (reviewed in Peng and Jou, 2010; Gleichmann and Mattson, 2011). It is worth mentioning that mitochondrial ROS increase is capable of modulating Ca2+ dynamics causing further increase of Ca2+ levels.

The cytoplasmic and mitochondrial Ca2+ levels, the oxidative stress and the energy production are very closely inter-related. For example, decreased (or lack) of ATP production can affect the function of plasma membrane Ca2+ pump activity causing Ca2+ overload, oxidative stress and further restriction in ATP generating capacity (reviewed in Nicholls, 2009). Prolonged oxidative stimuli cause further mitochondrial dysfunction, including the decrease of mitochondrial transmembrane potential (ΔΨm), further overload of mitochondrial calcium, and opening of mitochondrial permeability transition pore (MPTP) (Choi et al., 2013).

Mitochondria within dendrites are elongated and perform extensive directional and lateral movement at physiological conditions. Under an excitotoxic exposure to glutamate, mitochondrial movement has been found to be inhibited and mitochondria change morphology becoming rounded and swollen. Although blocking mitochondrial ATP production is sufficient to inhibit mitochondrial movement (Rintoul et al., 2003), research has shown that the collapse of mitochondrial structure requires extracellular Ca2+ influx via NMDA receptors (Rintoul et al., 2003; Pivovarova et al., 2004; Shalbuyeva et al., 2006), suggesting that structural, mechanistic understanding is also available supporting this KER.

In neurons, the high mitochondrial content in axons and dendrites closely correlates with the high energy demand in these structures that is needed to pump the ions that underlie the generation of action potentials mediated by the electrochemical gradients (Attwell and Laughlin, 2001).

Uncertainties and Inconsistencies
In addition to outlining the evidence supporting a particular linkage, it is also important to identify inconsistencies or uncertainties in the relationship. Additionally, while there are expected patterns of concordance that support a causal linkage between the KEs in the pair, it is also helpful to identify experimental details that may explain apparent deviations from the expected patterns of concordance. Identification of uncertainties and inconsistencies contribute to evaluation of the overall WoE supporting the AOPs that contain a given KER and to the identification of research gaps that warrant investigation (seep pages 41-42 of the User Handbook).Given that AOPs are intended to support regulatory applications, AOP developers should focus on those inconsistencies or gaps that would have a direct bearing or impact on the confidence in the KER and its use as a basis for inference or extrapolation in a regulatory setting. Uncertainties that may be of academic interest but would have little impact on regulatory application don’t need to be described. In general, this section details evidence that may raise questions regarding the overall validity and predictive utility of the KER (including consideration of both biological plausibility and empirical support). It also contributes along with several other elements to the overall evaluation of the WoE for the KER (see Section 4 of the User Handbook).  More help
Response-response Relationship
This subsection should be used to define sources of data that define the response-response relationships between the KEs. In particular, information regarding the general form of the relationship (e.g., linear, exponential, sigmoidal, threshold, etc.) should be captured if possible. If there are specific mathematical functions or computational models relevant to the KER in question that have been defined, those should also be cited and/or described where possible, along with information concerning the approximate range of certainty with which the state of the KEdownstream can be predicted based on the measured state of the KEupstream (i.e., can it be predicted within a factor of two, or within three orders of magnitude?). For example, a regression equation may reasonably describe the response-response relationship between the two KERs, but that relationship may have only been validated/tested in a single species under steady state exposure conditions. Those types of details would be useful to capture.  More help
Time-scale
This sub-section should be used to provide information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). This can be useful information both in terms of modelling the KER, as well as for analyzing the critical or dominant paths through an AOP network (e.g., identification of an AO that could kill an organism in a matter of hours will generally be of higher priority than other potential AOs that take weeks or months to develop). Identification of time-scale can also aid the assessment of temporal concordance. For example, for a KER that operates on a time-scale of days, measurement of both KEs after just hours of exposure in a short-term experiment could lead to incorrect conclusions regarding dose-response or temporal concordance if the time-scale of the upstream to downstream transition was not considered. More help
Known modulating factors
This sub-section presents information regarding modulating factors/variables known to alter the shape of the response-response function that describes the quantitative relationship between the two KEs (for example, an iodine deficient diet causes a significant increase in the slope of the relationship; a particular genotype doubles the sensitivity of KEdownstream to changes in KEupstream). Information on these known modulating factors should be listed in this subsection, along with relevant information regarding the manner in which the modulating factor can be expected to alter the relationship (if known). Note, this section should focus on those modulating factors for which solid evidence supported by relevant data and literature is available. It should NOT list all possible/plausible modulating factors. In this regard, it is useful to bear in mind that many risk assessments conducted through conventional apical guideline testing-based approaches generally consider few if any modulating factors. More help
Known Feedforward/Feedback loops influencing this KER
This subsection should define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits? In some cases where feedback processes are measurable and causally linked to the outcome, they should be represented as KEs. However, in most cases these features are expected to predominantly influence the shape of the response-response, time-course, behaviours between selected KEs. For example, if a feedback loop acts as compensatory mechanism that aims to restore homeostasis following initial perturbation of a KE, the feedback loop will directly shape the response-response relationship between the KERs. Given interest in formally identifying these positive or negative feedback, it is recommended that a graphical annotation (page 44) indicating a positive or negative feedback loop is involved in a particular upstream to downstream KE transition (KER) be added to the graphical representation, and that details be provided in this subsection of the KER description (see pages 44-45 of the User Handbook).  More help

Domain of Applicability

As for the KEs, there is also a free-text section of the KER description that the developer can use to explain his/her rationale for the structured terms selected with regard to taxonomic, life stage, or sex applicability, or provide a more generalizable or nuanced description of the applicability domain than may be feasible using standardized terms. More help

DomA toxicosis in California sea lions (CSLs, Zalophus californianus) is accompanied by increased expression of markers of oxidative stress such as malondialdehyde (MDA) and 3-nitrotyrosine (NT) in neurons (Madl et al., 2014).

In Atlantic salmon (Salmo salar), the cognition function has been investigated after exposure to sub-lethal doses of DomA (6 mg DA/kg bw). In addition, 14C-2-deoxyglucose has been injected i.m. to measure brain metabolic activity by autoradiography. The three brain regions investigated telencephalon, optic tectum and cerebellum have demonstrated a clear increase of metabolic activity in DomA exposed brains (Bakke and Horsberg, 2007).

References

List of the literature that was cited for this KER description using the appropriate format. Ideally, the list of references should conform, to the extent possible, with the OECD Style Guide (OECD, 2015). More help

Ananth C, Gopalakrishnakone P, Kaur C., Protective role of melatonin in domoic acid-induced neuronal damage in the hippocampus of adult rats. Hippocampus, 2003, 13: 375-87.

Attwell D, Laughlin SB, An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab., 2001, 21: 1133–1145.

Bakke MJ, Horsberg TE., Effects of algal-produced neurotoxins on metabolic activity in telencephalon, optic tectum and cerebellum of Atlantic salmon (Salmo salar). Aquat Toxicol., 2007, 85: 96-103.

Choi IY, Lim JH, Kim C, Song HY, Ju C, Kim WK., 4-hydroxy-2(E)-Nonenal facilitates NMDA-Induced Neurotoxicity via Triggering Mitochondrial Permeability Transition Pore Opening and Mitochondrial Calcium Overload. Exp Neurobiol., 2013, 22 :200-207.

Giordano G, White CC, McConnachie LA, Fernandez C, Kavanagh TJ, Costa LG. Neurotoxicity of domoic Acid in cerebellar granule neurons in a genetic model of glutathione deficiency. Mol Pharmacol., 2006, 70 :2116-26.

Giordano G, White CC, Mohar I, Kavanagh TJ, Costa LG. Glutathione levels modulate domoic acid-induced apoptosis in mouse cerebellar granule cells. Toxicol Sci., 2007, 100: 433-444.

Gleichmann M, Mattson MP., Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal., 2011, 14 :1261-1273.

Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF. Purple sweet potato color attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor-α-mediated mitochondrial biogenesis signaling in mice. Free Radic Biol Med., 2012, 52: 646-59.

Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF, Li MQ., Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein β-mediated inflammatory response and oxidative stress. J Immunol., 2013, 190: 3466-3479.

Madl JE, Duncan CG, Stanhill JE, Tai PY, Spraker TR, Gulland FM., Oxidative stress and redistribution of glutamine synthetase in California sea lions (Zalophus californianus) with domoic acid toxicosis. J Comp Pathol., 2014, 150: 306-315.

Nicholls DG., Mitochondrial calcium function and dysfunction in the central nervous system. Biochim Biophys Acta., 2009, 1787: 1416-1424.

Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci., 2010, 201: 183-188.

Pivovarova NB, Nguyen HV, Winters CA, Brantner CA, Smith CL, Andrews SB., Excitotoxic calcium overload in a subpopulation of mitochondria triggers delayed death in hippocampal neurons. J Neurosci., 2004, 24: 5611-5622.

Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ., Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci., 2003, 23: 7881-7888.

Shalbuyeva N, Brustovetsky T, Bolshakov A, Brustovetsky N. Calcium-dependent spontaneously reversible remodeling of brain mitochondria. J Biol Chem., 2006, 281: 37547-37558.

Shuttleworth CW, Connor JA. Strain-dependent differences in calcium signaling predict excitotoxicity in murine hippocampal neurons. J Neurosci., 2001, 15:21(12):4225-36.

Wu DM, Lu J, Zhang YQ, Zheng YL, Hu B, Cheng W, Zhang ZF, Li MQ., Ursolic acid improves domoic acid-induced cognitive deficits in mice. Toxicol Appl Pharmacol., 2013, 271: 127-36.