This AOP is licensed under the BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
AOP: 266
Title
Uncoupling of oxidative phosphorylation leading to growth inhibition via decreased Na-K ATPase activity
Short name
Graphical Representation
Point of Contact
Contributors
- You Song
Coaches
- Dan Villeneuve
OECD Information Table
OECD Project # | OECD Status | Reviewer's Reports | Journal-format Article | OECD iLibrary Published Version |
---|---|---|---|---|
1.92 | Under Development |
This AOP was last modified on April 29, 2023 16:03
Revision dates for related pages
Page | Revision Date/Time |
---|---|
Decrease, Coupling of oxidative phosphorylation | May 28, 2021 07:59 |
Decrease, Adenosine triphosphate pool | June 14, 2021 13:40 |
Decreased Na/K ATPase activity | September 24, 2024 09:54 |
Increase, Cell membrane depolarization | May 24, 2018 16:20 |
Increase, Cell injury/death | May 27, 2024 07:23 |
Decrease, Growth | July 06, 2022 07:36 |
Decrease, Coupling of OXPHOS leads to Decrease, ATP pool | July 06, 2022 07:39 |
Decrease, ATP pool leads to Decreased Na/K ATPase activity | October 19, 2022 09:01 |
Decreased Na/K ATPase activity leads to Increase, Cell membrane depolarization | October 19, 2022 09:01 |
Increase, Cell membrane depolarization leads to Cell injury/death | October 19, 2022 09:01 |
Cell injury/death leads to Decrease, Growth | September 27, 2022 13:22 |
Abstract
The proposed project aims to develop a network of AOPs for mitochondrial uncoupler mediated adverse effects on aquatic organisms.
AOP Development Strategy
Context
The mitochondrion is central for diverse types of physiological processes, such as energy production, cell cycle regulation, lipid metabolism and ion homeostasis. Mitochondrial dysfunction has frequently been reported as a common (eco)toxicological effect induced by a wide range of environmental stressors through direct or indirect modes of action (Meyer et al., 2013). Chemical mediated mitochondrial dysfunctions are tightly associated with various diseases in human, such as neurodegeneration, cardiovascular malfunction, diabetes and cancer, and multiple types of effects in wildlife, such as metabolic disorders, growth arrest, developmental abnormalities, reproduction failure, mortality and population decline (Meyer et al., 2013). Several mitochondrial dysfunction related MIEs have been well characterized, such as uncoupling of oxidative phosphorylation (OXPHOS) and inhibition of specific protein complexes in the mitochondrial electron transport chain. These MIEs commonly affect the mitochondrial membrane potential and ATP synthetic processes, induce reactive oxygen species (ROS) and oxidative damage to DNA, protein and lipid, modulate plasma membrane ion transporter activities and trigger programmed cell death.
Strategy
Summary of the AOP
Events:
Molecular Initiating Events (MIE)
Key Events (KE)
Adverse Outcomes (AO)
Type | Event ID | Title | Short name |
---|
MIE | 1446 | Decrease, Coupling of oxidative phosphorylation | Decrease, Coupling of OXPHOS |
KE | 1771 | Decrease, Adenosine triphosphate pool | Decrease, ATP pool |
KE | 1562 | Decreased Na/K ATPase activity | Decreased Na/K ATPase activity |
KE | 1527 | Increase, Cell membrane depolarization | Increase, Cell membrane depolarization |
KE | 55 | Increase, Cell injury/death | Cell injury/death |
AO | 1521 | Decrease, Growth | Decrease, Growth |
Relationships Between Two Key Events (Including MIEs and AOs)
Title | Adjacency | Evidence | Quantitative Understanding |
---|
Network View
Prototypical Stressors
Life Stage Applicability
Taxonomic Applicability
Sex Applicability
Overall Assessment of the AOP
Domain of Applicability
Essentiality of the Key Events
Evidence Assessment
Known Modulating Factors
Modulating Factor (MF) | Influence or Outcome | KER(s) involved |
---|---|---|