API

Aop: 32

AOP Title

?


Inhibition of iNOS, hepatotoxicity, and regenerative proliferation leading to liver tumors

Short name:

?

Inhibition of iNOS, hepatotoxicity, and regenerative proliferation leading to liver tumors

Authors

?


Michelle Embry, HESI

Point of Contact

?


Michelle Embry

Contributors

?


  • Michelle Embry

Status

?

Author status OECD status OECD project SAAOP status
Under development: Not open for comment. Do not cite Under Development


This AOP was last modified on December 03, 2016 16:37

?

Revision dates for related pages

Page Revision Date/Time
Production, Critical Metabolites (CGA 330050 and CGA 265307) September 16, 2017 10:14
Induction, Liver “Dysfunctional” Changes by CGA 330050 September 16, 2017 10:14
Inhibition, Inducible Nitric Oxide Synthase by Metabolite CGA 265307 September 16, 2017 10:14
Induction, Sustained Hepatotoxicity December 03, 2016 16:37
Induction, Sustained Cell Proliferation September 16, 2017 10:14
Formation, Liver tumor December 03, 2016 16:33
Production, Critical Metabolites (CGA 330050 and CGA 265307) leads to Induction, Liver “Dysfunctional” Changes by CGA 330050 December 03, 2016 16:37
Induction, Liver “Dysfunctional” Changes by CGA 330050 leads to Inhibition, Inducible Nitric Oxide Synthase by Metabolite CGA 265307 December 03, 2016 16:37
Inhibition, Inducible Nitric Oxide Synthase by Metabolite CGA 265307 leads to Induction, Sustained Hepatotoxicity December 03, 2016 16:37
Induction, Sustained Hepatotoxicity leads to Induction, Sustained Cell Proliferation December 03, 2016 16:37
Induction, Sustained Cell Proliferation leads to Formation, Liver tumor December 03, 2016 16:37

Abstract

?


Thiamethoxam is a neonicotinoid insecticide that has been extensively tested in animal models for short- and long-term toxicological effects. An increased incidence of liver tumors was seen in male and female Tif:MAGf mice when fed in the diet for 18 months at concentrations up to 2500 ppm. It is a mouse liver specific carcinogen and does not induce tumors at any other site in the mouse. There were no increases in cancer incidences either in the liver, or at any other site, in rats fed on diets containing up to 3000 ppm thiamethoxam for two years. Thiamethoxam was not genotoxic when evaluated in a battery of in vitro and in vivo assays.

Thiamethoxam is metabolize to two key metabolites, CGA 322704 and CGA 330050. These metabolites can be further metabolize to CGA 265307. Basic toxicity studies on these metabolites give clues to the critical events involved in its mode of action resulting in hepatacarcinogenesis. These metabolites were given at doses to mimic systemic exposure that would result following a tumorigenic dose of Thiamethoxam. When administered directly in the rodent bioassay (rats and mice), the CGA 322704 and CGA 265307 metabolites did not result in any tumors or any other effect in the liver including altered serum cholesterol, liver toxicity, apoptosis, or increased cell proliferation. However, Metabolite CGA 265307 is very structurally similar with substrates and inhibitors of the nitric oxide synthases. Direct exposure to metabolite CGA 330050 did not result in tumors but did result in the same liver toxicity effects as for thiamethoxam. It is proposed that the metabolites CGA 330050 and CGA 265307 are involved in thiamethoxam’s hepatocarcinogensis.


Background (optional)

?


This optional section should be used to provide background information for AOP reviewers and users that is considered helpful in understanding the biology underlying the AOP and the motivation for its development. The background should NOT provide an overview of the AOP, its KEs or KERs, which are captured in more detail below.

Instructions

To add background information, click Edit in the upper right hand menu on the AOP page. Under the “Background (optional)” field, a text editable form provides ability to edit the Background.  Clicking ‘Update AOP’ will update these fields.


Summary of the AOP

?



Stressors

?

Describes stressors known to trigger the MIE and provides evidence supporting that initiation. This will often be a list of prototypical compounds demonstrated to interact with the target molecule in the manner detailed in the MIE description to initiate a given pathway (e.g., 2,3,7,8-TCDD as a prototypical AhR agonist; 17α-ethynyl estradiol as a prototypical ER agonist). However, depending on the information available, this could also refer to chemical categories (i.e., groups of chemicals with defined structural features known to trigger the MIE). It can also include non-chemical stressors such as genetic or environmental factors. The evidence supporting the stressor will typically consist of a brief description and citation of literature showing that particular stressors can trigger the MIE.

Instructions

To add a stressor associated with an AOP, under “Summary of the AOP” click ‘Add Stressor’ will bring user to the “New Aop Stressor” page. In the Name field, user can search for stressor by name. Choosing a stressor from the resulting drop down populates the field. Selection of an Evidence level from the drop down menu and add any supporting evidence in the text box. Click ‘Add stressor’ to add the stressor to the AOP page.


Molecular Initiating Event

?

The MIE is the direct site of interaction with a chemical. The MIE involves a chemical interaction (e.g., a reaction, covalent binding, hydrogen bonding, electrostatic interaction, etc.) between a chemical stressor and chemically defined biomolecules within an organism. In some cases, this may be a highly specific interaction, for example between an exogenous ligand and a specific receptor. In other cases, it may be non-specific, as in the case of a reactive chemical that can covalently modify a wide array of proteins. Either can be described as an MIE, provided that the general nature of the stressor-biomolecule interaction is understood. Therefore, when a specific MIE can be defined (i.e., the molecular target and nature of interaction is known), in addition to describing the biological state associated with the MIE, how it can be measured, and its taxonomic applicability it is useful to list known chemical initiators (or other stressors known to trigger the MIE) and provide evidence supporting that initiation.

Instructions

To add a molecular initiating event to an AOP page, under Summary of the AOP, click ‘add molecular initiating event.’ User will be brought to a new page entitled ‘Add Event to AOP.’ Entering text into the Title field will bring a drop-down list of already existing MIE’s. If the user wishes to create a new MIE that doesn’t already exist, they should type in the name of the MIE without selecting a choice from the drop down menu. User should fill Title, Short name, Biological organization, and Essentiality fields and click ‘Create Molecular Initiating event.’ This brings user back to the AOP page with updated MIE under the heading “Molecular Initiating Event.”

To edit an MIE, click the ‘Edit’ button beside an MIE will bring user to the ‘Editing Aop Event’ page on which they can edit the Essentiality of the MIE from the drop down list. Clicking ‘Update Molecular Initiating Event’ will update the AOP page.


Key Events

?

Title Short name
Production, Critical Metabolites (CGA 330050 and CGA 265307) Production, Critical Metabolites (CGA 330050 and CGA 265307)
Induction, Liver “Dysfunctional” Changes by CGA 330050 Induction, Liver “Dysfunctional” Changes by CGA 330050
Inhibition, Inducible Nitric Oxide Synthase by Metabolite CGA 265307 Inhibition, Inducible Nitric Oxide Synthase by Metabolite CGA 265307
Induction, Sustained Hepatotoxicity Induction, Sustained Hepatotoxicity
Induction, Sustained Cell Proliferation Induction, Sustained Cell Proliferation
Formation, Liver tumor Formation, Liver tumor

Adverse Outcome

?

A key criterion of defining the terminal end of an AOP is that it represents an outcome that is considered relevant to regulatory decision-making (i.e., it corresponds to an accepted protection goal or common apical endpoint in an established regulatory guideline study). For example in humans, this may constitute increased risk of disease in a particular organ or organ system in an individual or in either the entire or a specified subset of the population. In wildlife, this will most often be an outcome of demographic significance that has meaning in terms of estimates of population sustainability. Given this consideration, in addition to describing the biological state associated with the AO, how it can be measured, and its taxonomic applicability, it is useful to describe the established regulatory relevance of the AO.

Instructions

To add an adverse outcome to an AOP page, under Summary of the AOP, click ‘add adverse outcome.’ User will be brought to a new page entitled ‘Add Event to AOP.’ Entering text into the Title field will bring a drop-down list of already existing KE’s. If the user wishes to create a new AO that doesn’t already exist, they should type in the name of the AO without selecting a choice from the drop down menu. User should fill Title, Short name, Biological organization fields and click ‘Create Adverse outcome.’


Relationships Between Two Key Events (Including MIEs and AOs)

?

Network View

?

 

Life Stage Applicability

?

Is the AOP specific to certain tissues, life stages / age classes? Indicate if there are critical life stages, where exposure must occur, to results in the final adverse effect. Or specify if there are key events along the pathway which are dependent on the life stage although the AOP is known to be initiated regardless of life stage. Indicate also if the AOP is associated also with age- or sex-dependence.

Instructions

To add a life stage term to an AOP page, under “Life Stage Applicability” select ‘add life stage term.’ User will be directed to a page entitled “Add Life Stage to AOP.” This page will list the AOP name, with drop down menu options to select a Life Stage term and Evidence. Evidence can be left blank and added later.

To edit a life stage term on an AOP page, under “Life Stage Applicability” click ‘Edit.’  User will be directed to a page entitled “Editing AOP Life Stage” where they can edit the Evidence field using the drop down menu. Clicking ‘Update Aop life stage’ will update the Evidence field and redirect the user back to the AOP page.


Taxonomic Applicability

?

Term Scientific Term Evidence Link
mice Mus sp. Strong NCBI

Sex Applicability

?

Sex Evidence
Male Strong
Female Strong

Graphical Representation

?

Click to download graphical representation template

W1siziisijiwmtyvmtevmjkvnzcztgl2zxjfvhvtb3jzx2zyb21fvghpb21ldghvegftlnbuzyjdlfsiccisinrodw1iiiwintaweduwmcjdxq?sha=501f4c47991dec56

Overall Assessment of the AOP

?



Consider the following criteria (may include references to KE Relationship pages): 1. concordance of dose-response relationships; 2. temporal concordance among the key events and adverse effect; 3. strength, consistency, and specificity of association of adverse effect and initiating event; 4. biological plausibility, coherence, and consistency of the experimental evidence; 5. alternative mechanisms that logically present themselves and the extent to which they may distract from the postulated AOP. It should be noted that alternative mechanisms of action, if supported, require a separate AOP; 6. uncertainties, inconsistencies and data gaps.

The AOP leading to thiamethoxam-induced hepatocarcinogenesis is a species-, time-, dose-, and metabolite-dependent process.

Dose and Temporal Concordance In a 50-week mouse study with thiamethoxam, the earliest change, within one week, was a marked reduction (by up to 40%) in plasma cholesterol. This was followed 10 weeks later by evidence of liver toxicity including increased single-cell necrosis and increased apoptosis. After 20 weeks there was a significant increase in hepatic cell replication rates. All of these changes persisted from the time they were first observed until the end of the study at 50 weeks. Progression of events was consistently seen in several studies of 10, 20, or 50 weeks duration, with the hallmark indicator being a substantial decrease in plasma cholesterol levels [1]. The time-dependent key events occurs in a dose-response relationship that parallels the dose-related, late-life occurrence of tumors in mouse livers [2] and are only found at the carcinogenic dose (i.e., ≥ 500 ppm).

Three metabolites (i.e., CGA 322704 and CGA 330050 which are further metabolize to CGA 265307) were identified and systematically evaluated for toxicological contribution to the sequence of hepatic effects. Mice and rats both produce CGA322704 as a major blood metabolite, which suggests that this particular metabolite is not an indicator of a species difference. However, CGA322704 does not cause liver tumors in mice nor does it cause any of the hepatic changes seen with thiamethoxam, and is thus considered not to be a part of causative chain of hepatic events. In contrast, CGA265307 and CGA330050 are produced in substantially greater quantity by mice than by rats (up to 140-fold and 15-fold greater, respectively), suggesting that the metabolic pathway through CGA330050 is critical to the AOP. In studies where these metabolites were fed to mice for at least ten weeks, CGA330050 was found to induce the same hepatic effects, and to the same degree, as thiamethoxam. CGA265307 alone induced none of the clinical or histopathological changes seen in the thiamethoxam-treated mice.

Strength, Consistency, Specificity of Association All key events are well-defined measured effects with dose response and temporal concordance. The role of specific metabolites and time-dependent progression of hepatic lesions consistently seen including two strains of mice but not in rats. The role of CGA265307 was established by comparing its structural similarity to known inhibitors of inducible nitric oxide synthase (iNOS), by verifying the ability of CGA265307 to inhibit iNOS in vitro, and by assessing the ability of CGA265307 to exacerbate the iNOS-dependent hepatic toxicity of carbon tetrachloride in vivo. Based on structure-activity relationships and in vitro and in vivo experimentation, CGA265307’s role is thought to enhance the relatively mild hepatotoxicity induced by CGA330050, which leads to an increase in cellular death (via necrosis and apoptosis).

Differences in metabolism between mice and rats, the contributory role of specific metabolites, and the time- dependent progression of hepatic lesions were consistently seen in a series of separate studies, including two strains of mice. [3] [4]

Plausibility and Coherence The phenomenon of a non-genotoxic mouse liver specific carcinogen is not uncommon in rodent bioassay studies. [5] Cytotoxicity and consequent regeneration is a well-known and well-documented mode of carcinogenic action for a variety of chemicals and for a variety of tissues including liver in laboratory animals. [6] [7] [8]

Alternative modes of action Genotoxicity, cytohrome P-450 induction, peroxisomal beta oxidation, and oxidative stress were considered experimentally and shown not to be viable.[9]

Domain of Applicability

?

The relevant domain(s) of applicability in terms of sex, life-stage, taxa, and other aspects of biological context are defined in this section. Domain of applicability is informed by the “Description” and “Taxonomic Relevance” section of each KE description and the “Description of the KER” section of each KER description. The relevant domain of applicability of the AOP as a whole will most often be defined based on the most narrowly restricted of its KEs. For example, if most of the KEs apply to either sex, but one is relevant to females only, the domain of applicability of the AOP as a whole would generally be limited to females. While much of the detail defining the domain of applicability may be found in the individual KE descriptions, the rationale for defining the relevant domain of applicability of the overall AOP should be briefly summarised on the AOP page.

Instructions

To edit the “Domain of Applicability” section, on an AOP page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing AOP.” Scroll down to the “Domain of Applicability” section, where a text entry box allows you to submit text. In the upper right hand menu, click ‘Update AOP’ to save your changes and return to the AOP page.  The new text should appear under the “Domain of Applicability” section on the AOP page.


Essentiality of the Key Events

?

The essentiality of various of the KEs is influential in considering confidence in an overall hypothesised AOP for potential regulatory application being secondary only to biological plausibility of KERs (Meek et al., 2014; 2014a). The defining question for determining essentiality (included in Annex 1) relates to whether or not downstream KEs and/or the AO is prevented if an upstream event is experimentally blocked. It is assessed, generally, then, on the basis of direct experimental evidence of the absence/reduction of downstream KEs when an upstream KE is blocked or diminished (e.g., in null animal models or reversibility studies). Weight of evidence for essentiality of KEs would be considered high if there is direct evidence from specifically designed experimental studies illustrating essentiality for at least one of the important key events [e.g., stop/reversibility studies, antagonism, knock out models, etc.) moderate if there is indirect 25 evidence that experimentally induced change of an expected modulating factor attenuates or augments a key event (e.g., augmentation of proliferative response (KEupstream) leading to increase in tumour formation (KEdownstream or AO)) and weak if there is no or contradictory experimental evidence of the essentiality of any of the KEs (Annex 1).

Instructions

To edit the “Essentiality of the Key Events” section, on an AOP page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing AOP.” Scroll down to the “Essentiality of the Key Events” section, where a text entry box allows you to submit text. In the upper right hand menu, click ‘Update AOP’ to save your changes and return to the AOP page.  The new text should appear under the “Essentiality of the Key Events” section on the AOP page.


Weight of Evidence Summary

?

This involves evaluation of the Overall AOP based on Relative Level of Confidence in the KERs, Essentiality of the KEs and Degree of Quantitative Understanding based on Annexes 1 and 2. Annex 1 (“Guidance for assessing relative level of confidence in the Overall AOP”) guides consideration of the weight of evidence or degree of confidence in the predictive relationship between pairs of KEs based on KER descriptions and support for essentiality of KEs. It is designed to facilitate assignment of categories of high, moderate or low against specific considerations for each a series of defined element based on current experience in assessing MOAs/AOPs. In addition to increasing consistency through delineation of defining questions for the elements and the nature of evidence associated with assignment to each of the categories, importantly, the objective of completion of Annex 1 is to transparently delineate the rationales for the assignment based on the specified considerations. While it is not necessary to repeat lengthy text which appears in earlier parts of the document, the entries for the rationales should explicitly express the reasoning for assignment to the categories, based on the considerations for high, moderate or low weight of evidence included in the columns for each of the relevant elements. 24 While the elements can be addressed separately for each of the KERs, the essentiality of the KEs within the AOP is considered collectively since their interdependence is often illustrated through prevention or augmentation of an earlier or later key event. Where it is not possible to experimentally assess the essentiality of the KEs within the AOP (i.e., there is no experimental model to prevent or augment the key events in the pathway), this should be noted. Identified limitations of the database to address the biological plausibility of the KERs, the essentiality of the KEs and empirical support for the KERs are influential in assigning the categories for degree of confidence (i.e., high, moderate or low). Consideration of the confidence in the overall AOP is based, then, on the extent of available experimental data on the essentiality of KEs and the collective consideration of the qualitative weight of evidence for each of the KERs, in the context of their interdependence leading to adverse effect in the overall AOP. Assessment of the overall AOP is summarized in the Network View, which represents the degree of confidence in the weight of evidence both for the rank ordered elements of essentiality of the key events and biological plausibility and empirical support for the interrelationships between KEs. The AOP-Wiki provides such a network graphic based on the information provided in the MIE, KE, AO, and KER tables. The Key Event Essentiality calls are used to determine the size of each key event node with larger sizes representing higher confidence for essentiality. The Weight of Evidence summary in the KER table is used to determine the width of the lines connecting the key events with thicker lines representing higher confidence.

Instructions

To edit the “Weight of Evidence Summary” section, on an AOP page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing AOP.” Scroll down to the “Weight of Evidence Summary”  section, where a text entry box allows you to submit text. In the upper right hand menu, click ‘Update AOP’ to save your changes and return to the AOP page.  The new text should appear under the “Weight of Evidence Summary” section on the AOP page.


Quantitative Considerations

?

The extent of quantitative understanding of the various KERs in the overall hypothesised AOP is also critical in consideration of potential regulatory application. For some applications (e.g. doseresponse analysis in in depth risk assessment), quantitative characterisation of downstream KERs may be essential while for others, quantitative understanding of upstream KERs may be important (e.g., QSAR modelling for category formation for testing). Because evidence that contributes to quantitative understanding of the KER is generally not mutually exclusive with the empirical support for the KER, evidence that contributes to quantitative understanding should generally be considered as part of the evaluation of the weight of evidence supporting the KER (see Annex 1, footnote b). General guidance on the degree of quantitative understanding that would be characterised as weak, moderate, or strong is provided in Annex 2.

Instructions

To edit the “Quantitative Considerations” section, on an AOP page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing AOP.” Scroll down to the “Quantitative Considerations” section, where a text entry box allows you to submit text. In the upper right hand menu, click ‘Update AOP’ to save your changes and return to the AOP page.  The new text should appear under the “Quantitative Considerations” section on the AOP page.


Considerations for Potential Applications of the AOP (optional)

?


At their discretion, the developer may include in this section discussion of the potential applications of an AOP to support regulatory decision-making. This may include, for example, possible utility for test guideline development or refinement, development of integrated testing and assessment approaches, development of (Q)SARs / or chemical profilers to facilitate the grouping of chemicals for subsequent read-across, screening level hazard assessments or even risk assessment. While it is challenging to foresee all potential regulatory application of AOPs and any application will ultimately lie within the purview of regulatory agencies, potential applications may be apparent as the AOP is being developed, particularly if it was initiated with a particular application in mind. This optional section is intended to provide the developer with an opportunity to suggest potential regulatory applications and describe his or her rationale. Detailing such considerations can aid the process of transforming narrative descriptions of AOPs into practical tools. In this context, it is necessarily beneficial to involve members of the regulatory risk assessment community on the development and assessment team. The Network view which is generated based on assessment of weight of evidence/degree of confidence in the hypothesized AOP taking into account the elements described in Section 7 provides a useful summary of relevant information as a basis to consider appropriate application in a regulatory context. Consideration of application needs then, to take into consideration the following rank ordered qualitative elements: Confidence in biological plausibility for each of the KERs Confidence in essentiality of the KEs Empirical support for each of the KERs and overall AOP The extent of weight of evidence/confidence in both these qualitative elements and that of the quantitative understanding for each of the KERs (e.g., is the MIE known, is quantitative understanding restricted to early or late key events) is also critical in determining appropriate application. For example, if the confidence and quantitative understanding of each KER in a hypothesised AOP are low and or low/moderate and the evidence for essentiality of KEs weak (Section 7), it might be considered as appropriate only for applications with less potential for impact (e.g., prioritisation, category formation for testing) versus those that have immediate implications potentially for risk management (e.g., in depth assessment). If confidence in quantitative understanding of late key events is high, this might be sufficient for an in depth assessment. The analysis supporting the Network view is also essential in identifying critical data gaps based on envisaged regulatory application.

Instructions

To edit the “Considerations for Potential Applications of the AOP” section, on an AOP page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing AOP.” Scroll down to the “Considerations for Potential Applications of the AOP” section, where a text entry box allows you to submit text. In the upper right hand menu, click ‘Update AOP’ to save your changes and return to the AOP page.  The new text should appear under the “Considerations for Potential Applications of the AOP” section on the AOP page.


References

?


  1. Green, T., Toghill, A., Lee, R., Waechter, F., Weber, E., and Noakes, J. (2005a). Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 1: mode of action studies in the mouse. Toxicol. Sci. 86, 36–47.
  2. Green, T., Toghill, A., Lee, R., Waechter, F., Weber, E., and Noakes, J. (2005a). Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 1: mode of action studies in the mouse. Toxicol. Sci. 86, 36–47.
  3. Green, T., Toghill, A., Lee, R., Waechter, F., Weber, E., and Noakes, J. (2005a). Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 1: mode of action studies in the mouse. Toxicol. Sci. 86, 36–47.
  4. Pastoor, T., Rose, P., Lloyd, S., Peffer, R., and Green T. (2005). Thiamethoxam induced mouse liver tumors and their relevance to humans, Part 3: Weight of evidence evaluation of the human health relevance of thiamethoxam-related mouse liver tumors. Toxicological Sciences 86(1), 56–60.
  5. Carmichael, N. G., Enzmann, H., Pate, I., and Waechter, F. (1997). The significance of mouse liver tumor formation for carcinogenic risk assess- ment: Results and conclusions from a survey of ten years of testing. Environ. Health Perspect. 105, 1196–1203.
  6. Holsapple, M.P., Pitot, H.C., Cohen, S.H., Boobis, A.R., Klaunig, J.E., Pastoor, T., Dellarco, V.L., and Dragan, Y.P. (2006). Mode of Action in Relevance of Rodent Liver Tumors to Human Cancer Risk. Toxicological Sciences 89(1), 51–56.
  7. Bogdanffy, M.S. (2002). Vinyl acetate-induced intracellular acidification: implications for risk assessment. Toxicol Sci. 2002 Apr;66(2):320-6.
  8. Meek, M., Bucher, J., Cohen, S., Dellarco, V., Hill, R., Lehman-McKeeman, L., Longfellow, D., Pastoor, T., Seed, J., and Patton, D. (2003). A Framework for human relevance analysis of information on carcinogenic modes of action. Crit. Rev. Toxicol. 33, 591–653.
  9. Green, T., Toghill, A., Lee, R., Waechter, F., Weber, E., and Noakes, J. (2005a). Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 1: mode of action studies in the mouse. Toxicol. Sci. 86, 36–47.

Confidence in the AOP

Information from this section should be moved to the Key Event Relationship pages!

The coherence and extent of the database on thiamethoxam and its metabolites clearly demonstrates the mode of action for mouse liver tumorigenesis involving hepatocytotoxicity and regenerative cell proliferation [1] [2] The responses seen with thiamethoxam have been reproduced in studies of 50 and 20 weeks duration, the latter in two strains of mouse. The metabolite studies were internally consistent in that CGA330050 is only formed from thiamethoxam and not from the non-carcinogenic metabolite CGA322704. In all of the studies the key events had logical dose and temporal relationships. The metabolite studies were clear and consistent with the known carcinogenicity profiles of thiamethoxam and CGA322704. Studies on the metabolite CGA265307 and the inhibition of inducible nitric oxide synthase were limited, but showed that CGA265307 inhibits iNOS in vitro and enhances the toxicity of carbon tetrachloride in vivo. It is reasonable to conclude that CGA265307, although not toxic alone, could enhance the hepatotoxicity of metabolite CGA330050. Based on comparative metabolic studies neither rats nor humans would produce sufficient level of the two critical metabolites (CGA 330050 and CGA 265307) to initiate the progression of hepatic key events. As a consequence, it is unlikely that humans would be at risk of developing liver tumors as a result of exposure to thiamethoxam.
Cite error: <ref> tags exist, but no <references/> tag was found