To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KE:26

Event: 26

Key Event Title

The KE title should describe a discrete biological change that can be measured. It should generally define the biological object or process being measured and whether it is increased, decreased, or otherwise definably altered relative to a control state. For example “enzyme activity, decreased”, “hormone concentration, increased”, or “growth rate, decreased”, where the specific enzyme or hormone being measured is defined. More help

Antagonism, Androgen receptor

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. The short name should be less than 80 characters in length. More help
Antagonism, Androgen receptor

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. Note, KEs should be defined within a particular level of biological organization. Only KERs should be used to transition from one level of organization to another. Selection of the level of biological organization defines which structured terms will be available to select when defining the Event Components (below). More help
Level of Biological Organization

Cell term

Further information on Event Components and Biological Context may be viewed on the attached pdf.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable. More help
Cell term
eukaryotic cell

Organ term

Further information on Event Components and Biological Context may be viewed on the attached pdf.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable. More help

Key Event Components

Further information on Event Components and Biological Context may be viewed on the attached pdf.Because one of the aims of the AOP-KB is to facilitate de facto construction of AOP networks through the use of shared KE and KER elements, authors are also asked to define their KEs using a set of structured ontology terms (Event Components). In the absence of structured terms, the same KE can readily be defined using a number of synonymous titles (read by a computer as character strings). In order to make these synonymous KEs more machine-readable, KEs should also be defined by one or more “event components” consisting of a biological process, object, and action with each term originating from one of 22 biological ontologies (Ives, et al., 2017; See List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling). The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signalling by that receptor).Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description. To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons. If a desired term does not exist, a new term request may be made via Term Requests. Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add. More help

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE. Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
AR antagonism leading to short AGD MolecularInitiatingEvent Terje Svingen (send email) Under development: Not open for comment. Do not cite Under Development
AR antagonism leading to NR MolecularInitiatingEvent Terje Svingen (send email) Under development: Not open for comment. Do not cite
AR antagonism leading to decreased fertility MolecularInitiatingEvent Terje Svingen (send email) Under development: Not open for comment. Do not cite
Androgen receptor antagonism and testicular cancer MolecularInitiatingEvent Chander K. Negi (send email) Under development: Not open for comment. Do not cite


This is a structured field used to identify specific agents (generally chemicals) that can trigger the KE. Stressors identified in this field will be linked to the KE in a machine-readable manner, such that, for example, a stressor search would identify this as an event the stressor can trigger. NOTE: intermediate or downstream KEs in one AOP may function as MIEs in other AOPs, meaning that stressor information may be added to the KE description, even if it is a downstream KE in the pathway currently under development.Information concerning the stressors that may trigger an MIE can be defined using a combination of structured and unstructured (free-text) fields. For example, structured fields may be used to indicate specific chemicals for which there is evidence of an interaction relevant to this MIE. By linking the KE description to a structured chemical name, it will be increasingly possible to link the MIE to other sources of chemical data and information, enhancing searchability and inter-operability among different data-sources and knowledgebases. The free-text section “Evidence for perturbation of this MIE by stressor” can be used both to identify the supporting evidence for specific stressors triggering the MIE as well as to define broad chemical categories or other properties that classify the stressors able to trigger the MIE for which specific structured terms may not exist. More help

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) can be selected from an ontology. In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
human Homo sapiens High NCBI
mouse Mus musculus High NCBI
rat Rattus norvegicus High NCBI
human and other cells in culture human and other cells in culture High NCBI

Life Stages

The structured ontology terms for life-stage are more comprehensive than those for taxa, but may still require further description/development and explanation in the free text section. More help
Life stage Evidence
Foetal High
Embryo Moderate
During development and at adulthood High

Sex Applicability

The authors must select from one of the following: Male, female, mixed, asexual, third gender, hermaphrodite, or unspecific. More help
Term Evidence
Mixed High

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. For example, the biological state being measured could be the activity of an enzyme, the expression of a gene or abundance of an mRNA transcript, the concentration of a hormone or protein, neuronal activity, heart rate, etc. The biological compartment may be a particular cell type, tissue, organ, fluid (e.g., plasma, cerebrospinal fluid), etc. The role in the biology could describe the reaction that an enzyme catalyses and the role of that reaction within a given metabolic pathway; the protein that a gene or mRNA transcript codes for and the function of that protein; the function of a hormone in a given target tissue, physiological function of an organ, etc. Careful attention should be taken to avoid reference to other KEs, KERs or AOPs. Only describe this KE as a single isolated measurable event/state. This will ensure that the KE is modular and can be used by other AOPs, thereby facilitating construction of AOP networks. More help

The androgen receptor (AR) and its function

Development of the male reproductive system and secondary male characteristics is dependent on androgens (foremost testosterone (T) and dihydrotestosterone (DHT). T and the more biologically active DHT act by binding to the AR (MacLean et al, 1993; MacLeod et al, 2010; Schwartz et al, 2019), with human AR mutations and mouse knock-out models having established its pivotal role in masculinization and spermatogenesis (Walters et al, 2010). The AR is a ligand-activated transcription factor belonging to the steroid hormone nuclear receptor family (Davey & Grossmann, 2016). The AR has three domains; the N-terminal domain, the DNA-binding domain and the ligand-binding domain, with the latter being most evolutionary conserved. Apart from the essential role AR plays for male reproductive development and function (Walters et al, 2010), the AR is also expressed in many other tissues and organs such as bone, muscles, ovaries and the immune system (Rana et al, 2014). 

AR antagonism as Key Event

The main function of the AR is to activate gene transcription in cells. Canonical signaling occurs by ligands (androgens) binding to AR in the cytoplasm which results in translocation to the cell nucleus, receptor dimerization and binding to specific regulatory DNA sequences (Heemers & Tindall, 2007). The gene targets regulated by AR activation depends on cell/tissue type and what stage of development activation occur, and is, for instance, dependent on available co-factors. Apart from the canonical signaling pathway, AR can also function through non-genomic modalities, for instance rapid change in cell function by ion transport changes (Heinlein & Chang, 2002). However, with regard to this specific KE the canonical signaling pathway is what is referred to.

How It Is Measured or Detected

One of the primary considerations in evaluating AOPs is the relevance and reliability of the methods with which the KEs can be measured. The aim of this section of the KE description is not to provide detailed protocols, but rather to capture, in a sentence or two, per method, the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements. Methods that can be used to detect or measure the biological state represented in the KE should be briefly described and/or cited. These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA).Key considerations regarding scientific confidence in the measurement approach include whether the assay is fit for purpose, whether it provides a direct or indirect measure of the biological state in question, whether it is repeatable and reproducible, and the extent to which it is accepted in the scientific and/or regulatory community. Information can be obtained from the OECD Test Guidelines website and the EURL ECVAM Database Service on Alternative Methods to Animal Experimentation (DB-ALM). ?

AR antagonism can be measured in vitro by transient or stable transactivation assays to evaluate nuclear receptor activation. There is already a validated assay for AR (ant)agonism adopted by the OECD, Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals (OECD, 2016). The stably transfected AR-EcoScreenTM cells (Satoh et al, 2004) should be used for the assay and is freely available for the Japanese Collection of Research Bioresources (JCRB) Cell Bank under reference number JCRB1328.

Other assays include the AR-CALUX reporter gene assay that is derived from human U2-OS cells stably transfected with the human AR and an AR responsive reporter gene (van der Burg et al, 2010), various transiently transfected reporter cell lines (Körner et al, 2004), and more.

Recently developed AR dimerization assay may soon be included in TGs for its improved ability to measure potential stressor-mediated dimerization/activation (Lee et al, 2021).

Domain of Applicability

This free text section should be used to elaborate on the scientific basis for the indicated domains of applicability and the WoE calls (if provided). While structured terms may be selected to define the taxonomic, life stage and sex applicability (see structured applicability terms, above) of the KE, the structured terms may not adequately reflect or capture the overall biological applicability domain (particularly with regard to taxa). Likewise, the structured terms do not provide an explanation or rationale for the selection. The free-text section on evidence for taxonomic, life stage, and sex applicability can be used to elaborate on why the specific structured terms were selected, and provide supporting references and background information.  More help

Both the DNA-binding and ligand-binding domains of the AR are highly evolutionary conserved, whereas the transactivation domain show more divergence which may affect AR-mediated gene regulation across species (Davey & Grossmann, 2016). Despite certain inter-species differences, AR function mediated through gene expression is highly conserved, with mutations studies from both humans and rodents showing strong correlation for AR-dependent development and function (Walters et al, 2010).

This KE is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across taxa

Evidence for Perturbation by Stressor

Overview for Molecular Initiating Event

When a specific MIE can be defined (i.e., the molecular target and nature of interaction is known), in addition to describing the biological state associated with the MIE, how it can be measured, and its taxonomic, life stage, and sex applicability, it is useful to list stressors known to trigger the MIE and provide evidence supporting that initiation. This will often be a list of prototypical compounds demonstrated to interact with the target molecule in the manner detailed in the MIE description to initiate a given pathway (e.g., 2,3,7,8-TCDD as a prototypical AhR agonist; 17α-ethynyl estradiol as a prototypical ER agonist). Depending on the information available, this could also refer to chemical categories (i.e., groups of chemicals with defined structural features known to trigger the MIE). Known stressors should be included in the MIE description, but it is not expected to include a comprehensive list. Rather initially, stressors identified will be exemplary and the stressor list will be expanded over time. For more information on MIE, please see pages 32-33 in the User Handbook.

A large number of drugs and chemicals have been shown to antagonise the AR using various AR reporter gene assays. The AR is specifically targeted in AR-sensitive cancers, for example the use of the anti-androgenic drug flutamide in treating prostate cancer (Alapi & Fischer, 2006). Flutamide has also been used in several rodent in vivo studies showing anti-androgenic effects (feminization of male offspring) evident by e.g. short anogenital distance (AGD) in males (Foster & Harris, 2005; Hass et al, 2007; Kita et al, 2016). QSAR models can predict AR antagonism for a wide range of chemicals, many of which have shown in vitro antagonistic potential (Vinggaard et al, 2008).


Using hAR-EcoScreen Assay, triticonazole showed a LOEC for antagonisms of 0.2 uM and an IC50 of 0.3 (±0.01) uM (Draskau et al, 2019)


Using hAR-EcoScreen Assay, flusilazole showed a LOEC for antagonisms of 0.8 uM and an IC50 of 2.8 (±0.1) uM (Draskau et al, 2019).►


Using transiently AR-transfected CHO cells, epoxiconazole showed a LOEC of 1.6 uM and an IC50 of 10 uM (Kjærstad et al, 2010)


Using transiently AR-transfected CHO cells, prochloraz showed a LOEC of 6.3 uM and an IC50 of 13 uM (Kjærstad et al, 2010)


Using transiently AR-transfected CHO cells, propiconazole showed a LOEC of 12.5 uM and an IC50 of 18 uM (Kjærstad et al, 2010)


Using transiently AR-transfected CHO cells, tebuconazole showed a LOEC of 3.1 uM and an IC50 of 8.1 uM (Kjærstad et al, 2010)


Using the AR-CALUX reporter assay in antagonism mode, flutamide showed an IC50 of 1.3 uM (Sonneveld et al, 2005).

Cyproterone acetate

Using the AR-CALUX reporter assay in antagonism mode, cyproterone acetate showed an IC50 of 7.1 nM (Sonneveld et al, 2005).


Using the AR-CALUX reporter assay in antagonism mode, vinclozolin showed an IC50of 1.0 uM (Sonneveld et al, 2005).


List of the literature that was cited for this KE description. Ideally, the list of references, should conform, to the extent possible, with the OECD Style Guide ( (OECD, 2015). More help

Alapi EM, Fischer J (2006) Table of Selected Analogue Classes. In Analogue-based Drug Discovery, Fischer J, Ganellin CR (eds), p 515. Weinheim: Wiley-VCH Verlag GmbH & Co

Davey RA, Grossmann M (2016) Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev 37: 3-15

Draskau MK, Boberg J, Taxvig C, Pedersen M, Frandsen HL, Christiansen S, Svingen T (2019) In vitro and in vivo endocrine disrupting effects of the azole fungicides triticonazole and flusilazole. Environ Pollut 255: 113309

Foster PM, Harris MW (2005) Changes in androgen-mediated reproductive development in male rat offspring following exposure to a single oral dose of flutamide at different gestational ages. Toxicol Sci 85: 1024-1032

Hass U, Scholze M, Christiansen S, Dalgaard M, Vinggaard AM, Axelstad M, Metzdorff SB, Kortenkamp A (2007) Combined exposure to anti-androgens exacerbates disruption of sexual differentiation in the rat. Environ Health Perspect 115 Suppl. 1: 122-128

Heemers HV, Tindall DJ (2007) Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev 28: 778-808

Heinlein CA, Chang C (2002) The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 16: 2181-2187

Kita DH, Meyer KB, Venturelli AC, Adams R, Machado DL, Morais RN, Swan SH, Gennings C, Martino-Andrade AJ (2016) Manipulation of pre and postnatal androgen environments and anogenital distance in rats. Toxicology 368-369: 152-161

Kjærstad MB, Taxvig C, Nellemann C, Vinggaard AM, Andersen HR (2010) Endocrine disrupting effects in vitro of conazole antifungals used as pesticides and pharmaceuticals. Reprod Toxicol 30: 573-582

Körner W, Vinggaard AM, Térouanne B, Ma R, Wieloch C, Schlumpf M, Sultan C, Soto AM (2004) Interlaboratory comparison of four in vitro assays for assessing androgenic and antiandrogenic activity of environmental chemicals. Environ Health Perspect 112: 695-702

Lee SH, Hong KY, Seo H, Lee HS, Park Y (2021) Mechanistic insight into human androgen receptor-mediated endocrine-disrupting potentials by a stable bioluminescence resonance energy transfer-based dimerization assay. Chem Biol Interact 349: 109655

MacLean HE, Chu S, Warne GL, Zajac JD (1993) Related individuals with different androgen receptor gene deletions. J Clin Invest 91: 1123-1128

MacLeod DJ, Sharpe RM, Welsh M, Fisken M, Scott HM, Hutchison GR, Drake AJ, van den Driesche S (2010) Androgen action in the masculinization programming window and development of male reproductive organs. Int J Androl 33: 279-287

OECD. (2016) Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals. OECD Guidelines for the Testing of Chemicals, Section 4, Paris.

Rana K, davey RA, Zajac JD (2014) Human androgen deficiency: insights gained from androgen receptor knockout mouse models. Asian J Androl 16: 169-177

Satoh K, Ohyama K, Aoki N, Iida M, Nagai F (2004) Study on anti-androgenic effects of bisphenol a diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE) and their derivatives using cells stably transfected with human androgen receptor, AR-EcoScreen. Food Chem Toxicol 42: 983-993

Schwartz CL, Christiansen S, Vinggaard AM, Axelstad M, Hass U, Svingen T (2019) Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch Toxicol 93: 253-272

Sonneveld E, Jansen HJ, Riteco JA, Brouwer A, van der Burg B (2005) Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol Sci 83: 136-148

van der Burg B, Winter R, Man HY, Vangenechten C, Berckmans P, Weimer M, Witters H, van der Linden S (2010) Optimization and prevalidation of the in vitro AR CALUX method to test androgenic and antiandrogenic activity of compounds. Reprod Toxicol 30: 18-24

Vinggaard AM, Niemelä J, Wedebye EB, Jensen GE (2008) Screening of 397 chemicals and development of a quantitative structure--activity relationship model for androgen receptor antagonism. Chem Res Toxicol 21: 813-823

Walters KA, Simanainen U, Handelsman DJ (2010) Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum Reprod Update 16: 543-558