This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
Event: 291
Key Event Title
Accumulation, Triglyceride
Short name
Biological Context
Level of Biological Organization |
---|
Cellular |
Cell term
Cell term |
---|
hepatocyte |
Organ term
Key Event Components
Process | Object | Action |
---|---|---|
triglyceride | increased |
Key Event Overview
AOPs Including This Key Event
AOP Name | Role of event in AOP | Point of Contact | Author Status | OECD Status |
---|---|---|---|---|
LXR Activation to Liver Steatosis | KeyEvent | Undefined (send email) | Not under active development | |
AhR activation to steatosis | KeyEvent | Michelle Angrish (send email) | Under Development: Contributions and Comments Welcome | |
GR activation leading to hepatic steatosis | KeyEvent | Chander K. Negi (send email) | Under Development: Contributions and Comments Welcome | |
PXR activation leads to liver steatosis | KeyEvent | John Frisch (send email) | Under development: Not open for comment. Do not cite | |
LXR activation leads to liver steatosis | KeyEvent | John Frisch (send email) | Under development: Not open for comment. Do not cite | |
PFOS binding to PPARs leads to liver steatosis | KeyEvent | Erik Mylroie (send email) | Under development: Not open for comment. Do not cite |
Taxonomic Applicability
Term | Scientific Term | Evidence | Link |
---|---|---|---|
Vertebrates | Vertebrates | High | NCBI |
Life Stages
Life stage | Evidence |
---|---|
Adult | High |
Juvenile | Moderate |
Sex Applicability
Term | Evidence |
---|---|
Unspecific | High |
Key Event Description
Triglycerides are important building blocks for a wide variety of compounds found in organisms, with cellular concentrations reflecting the relative rate of influx and efflux, as well as the relative rate of synthesis and breakdown. However, excess accumulation leads to Fatty Liver Cells and steatosis.
In this key event we focus on excessive accumulation of triglycerides in mammalian systems. Four major pathways for triglyceride accumulation are: 1. Increased fatty acid uptake; 2. Increased De Novo FA and Lipid Synthesis; 3. Decreased FA Oxidation; 4. Decreased Lipid Efflux (Angrish et al. 2016). Chemical stressors can increase gene expression of key genes involving these pathways, leading to increased accumulation of triglycerides (Aguayo-Orozco et al. 2018). In addition, excessive dietary compounds of fatty compounds can also increase likelihood of accumulation of triglycerides (Nguyen et al. 2008). Nuclear receptors that have been implicated in causing excessive accumulation of triglycerides leading to steatosis, when overexpressed, include (Mellor et al. 2016): Aryl hydrocarbon receptor (AHR), Constitutive androstane receptor (CAR), Oestrogen receptor (ER), Farnesoid X receptor (FXR), Glucocorticoid receptor (GXR), Liver X receptor (LXR), Peroxisome proliferator-activated receptor (PPAR), Pregnane X receptor (PXR), and Retinoic acid receptor (RAR or RXR).
How It Is Measured or Detected
Concentrations of triglycerides, cholesterols, fatty acids, and related compounds are measured biochemically to assess levels in control versus potentially affected individuals; common techniques include high throughput enzymatic analyses, analytical ultracentrifuging, gradient gel electrophoresis, Nuclear Magnetic Resonance, lipidomics, and other direct assessment techniques (Schaefer et al. 2016; Yang and Han 2016). Analysis is often performed to look at gene expression levels to see which pathway(s) have increased expression levels, to attribute plausibility to changes in influx, eflux, synthesis, and/or breakdown pathways (Nguyen et al. 2008; Mellor et al. 2016, Aguayo-Orozco et al. 2018). Assessment of cellular components including mitochondria and membrane integrity can also be used as evidence of alteration of normal function within cells.
Domain of Applicability
Life Stage: Older individuals are more likely to manifest this key event (adults > juveniles) due to accumulation of triglycerides.
Sex: Applies to both males and females.
Taxonomic: Appears to be present broadly in vertebrates, with most representative studies in mammals (humans, lab mice, lab rats). Likely pervasive in many animal taxa.
References
Aguayo-Orozco, A.A., Bois, F.Y., Brunak, S., and Taboureau, O. 2018. Analysis of Time-Series Gene Expression Data to Explore Mechanisms of Chemical-Induced Hepatic Steatosis Toxicity. Frontiers in Genetics 9(Article 396): 1-15.
Angrish, M.M., Kaiser, J.P., McQueen, C.A., and Chorley, B.N. 2016. Tipping the Balance: Hepatotoxicity and the 4 Apical Key Events of Hepatic Steatosis. Toxicological Sciences 150(2): 261–268.
Mellor, C.L., Steinmetz, F.P., and Cronin, T.D. 2016. The identification of nuclear receptors associated with hepatic steatosis to develop and extend adverse outcome pathways. Critical Reviews in Toxicology, 46(2): 138-152.
Nguyen, P., Leray, V., Diez, M., Serisier, S., Le Bloc’h, J., Siliart, B., and Dumon, H. 2008. Liver lipid metabolism. Journal of Animal Physiology and Animal Nutrition 92: 272–283.
Schaefer EJ, Tsunoda F, Diffenderfer M, Polisecki, E., Thai, N., and Astalos, B. The Measurement of Lipids, Lipoproteins, Apolipoproteins, Fatty Acids, and Sterols, and Next Generation Sequencing for the Diagnosis and Treatment of Lipid Disorders. [Updated 2016 Mar 29]. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK355892/
Yang, K. and Han, X. 2016. Lipidomics: Techniques, applications, and outcomes related to biomedical sciences. Trends in Biochemical Sciences 2016 November ; 41(11): 954–969.
NOTE: Italics symbolize edits from John Frisch