This Event is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Event: 875

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Binding of agonist, Ionotropic glutamate receptors

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Binding of agonist, Ionotropic glutamate receptors
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization
Molecular

Cell term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Cell term
neuron

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; https://aopwiki.org/info_pages/2/info_linked_pages/7#List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Process Object Action
ionotropic glutamate receptor activity ionotropic glutamate receptor complex increased

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE.Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
ionotropic glutamatergic receptors and cognition MolecularInitiatingEvent Anna Price (send email) Open for citation & comment WPHA/WNT Endorsed
IGR binding leads to impairment of learning and memory (via loss of drebrin) MolecularInitiatingEvent Shihori Tanabe (send email) Under development: Not open for comment. Do not cite Under Development

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
Drosophila melanogaster Drosophila melanogaster High NCBI
Rattus norvegicus Rattus norvegicus High NCBI
Primates sp. BOLD:AAA0001 Primates sp. BOLD:AAA0001 High NCBI
human Homo sapiens High NCBI
mice Mus sp. High NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help

Sex Applicability

An indication of the the relevant sex for this KE. More help

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

The MIE of this AOP can be triggered by direct binding of an agonist to NMDARs or indirectly through initial activation of KA/AMPARs. Indeed, binding of agonist to KA/AMPARs results in ion influx (Na+ and a small efflux of K+) and glutamate release from excitatory synaptic vesicles causing depolarization of the postsynaptic neuron (Dingledine et al. 1999). Upon this depolarization the Mg2+ block is removed from the pore of NMDARs, allowing sodium, potassium, and importantly, calcium ions to enter into a cell. At positive potentials NMDARs then show maximal permeability (i.e., large outward currents can be observed under these circumstances). Due to the time needed for the Mg2+ removal, NMDARs activate more slowly, having a peak conductance long after the KA/AMPAR peak conductance takes place. It is important to note that NMDARs conduct currents only when Mg2+ block is relieved, glutamate is bound, and the postsynaptic neuron is depolarized. For this reason the NMDA receptors act as “coincidence detectors” and play a fundamental role in the establishment of Hebbian synaptic plasticity which is considered the physiological correlate of associative learning (Daoudal and Debanne, 2003; Glanzman, 2005). Post-synaptic membrane depolarization happens almost always through activation of KA/AMPARs (Luscher and Malenka, 2012). Therefore, a MIE of this AOP is defined as binding of an agonist to these three types of ionotropic receptors (KA/AMPA and NMDA) that can result in a prolonged overactivation of NMDARs through (a) direct binding of an agonist or (b) indirect, mediated through initial KA/AMPARs activation. The excitotoxic neuronal cell death, triggered by sustained NMDARs overactivation in the hippocampus and/or cortex leads to the impaired learning and memory, defined as the adverse outcome (AO) of this AOP.

Biological state: L-glutamate (Glu) is a neurotransmitter with important role in the regulation of brain development and maturation processes. Two major classes of Glu receptors, ionotropic and metabotropic, have been identified. Due to its physiological and pharmacological properties, Glu activates three classes of ionotropic receptors named: α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA receptors), 2-carboxy-3-carboxymethyl-4-isopropenylpyrrolidine (kainate receptors) and N-methyl-D-aspartate (NMDA receptors, NMDARs), which transduce the postsynaptic signal. Ionotropic glutamate receptors are integral membrane proteins formed by four large subunits that compose a central ion channel pore. In case of NMDA receptors, two NR1 subunits are combined with either two NR2 (NR2A, NR2B, NR2C, NR2D) subunits and less commonly are assembled together with a combination of NR2 and NR3 (A, B) subunits (reviewed in Traynelis et al., 2010). To be activated NMDA receptors require simultaneous binding of both glutamate to NR2 subunits and of glycine to either NR1 or NR3 subunits that provide the specific binding sites named extracellular ligand-binding domains (LBDs). Apart from LBDs, NMDA receptor subunits contain three more domains that are considered semiautonomous: 1) the extracellular amino-terminal domain that plays important role in assembly and trafficking of these receptors; 2) the transmembrane domain that is linked with LBD and contributes to the formation of the core of the ion channel and 3) the intracellular carboxyl-terminal domain that influences membrane targeting, stabilization, degradation and post-translation modifications.

Biological compartments: The genes of the NMDAR subunits are expressed in various tissues and are not only restricted to the nervous system. The level of expression of these receptors in neuronal and non-neuronal cells depends on: transcription, chromatin remodelling, mRNA levels, translation, stabilization of the protein, receptor assembly and trafficking, energy metabolism and numerous environmental stimuli (reviewed in Traynelis et al., 2010). In hippocampus region of the brain, NR2A and NR2B are the most abundant NR2 family subunits. NR2A-containing NMDARs are mostly expressed synaptically, while NR2B-containing NMDARs are found both synaptically and extrasynaptically (Tovar and Westbrook, 1999).

General role in biology: NMDA receptors, when compared to the other Glu receptors, are characterized by higher affinity for Glu, slower activation and desensitisation kinetics, higher permeability for calcium (Ca2+) and susceptibility to potential-dependent blockage by magnesium ions (Mg2+). NMDA receptors are involved in fast excitatory synaptic transmission and neuronal plasticity in the central nervous system (CNS). Functions of NMDA receptors:

1. They are involved in cell signalling events converting environmental stimuli to genetic changes by regulating gene transcription and epigenetic modifications in neuronal cells (Cohen and Greenberg, 2008).

2. In NMDA receptors, the ion channel is blocked by extracellular Mg2+ and Zn2+ ions, allowing the flow of Na+ and Ca2+ ions into the cell and K+ out of the cell which is voltage-dependent. Ca2+ flux through the NMDA receptor is considered to play a critical role in pre- and post-synaptic plasticity, a cellular mechanism important for learning and memory (Barria and Malinow, 2002).

3. The NMDA receptors have been shown to play an essential role in the strengthening of synapses and neuronal differentiation, through long-term potentiation (LTP), and the weakening of synapses, through long-term depression (LTD). All these processes are implicated in the memory and learning function (Barria and Malinow, 2002).

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help

Methods that have been previously reviewed and approved by a recognized authority should be included in the Overview section above. All other methods, including those well established in the published literature, should be described here. Consider the following criteria when describing each method: 1. Is the assay fit for purpose? 2. Is the assay directly or indirectly (i.e. a surrogate) related to a key event relevant to the final adverse effect in question? 3. Is the assay repeatable? 4. Is the assay reproducible?

1. Ex vivo: The most common assay used is the NMDA receptor (MK801 site) radioligand competition binding assay (Reynolds and Palmer, 1991; Subramaniam and McGonigle, 1991; http://pdsp.med.unc.edu/UNC-CH%20Protocol%20Book.pdf; http://www.currentprotocols.com/WileyCDA/CPUnit/refId-ph0120.html). This assay is based on the use of the most potent and specific antagonist of this receptor, MK801 that is used to detect and differentiate agonists and antagonists (competitive and non-competitive) that bind to this specific site of the receptor. Also radioligand competition binding assay can be performed using D, L-(E)-2-amino-4-[3H]-propyl-5-phosphono-3-pentenoic acid ([3H]-CGP 39653), a high affinity selective antagonist at the glutamate site of NMDA receptor, which is a quantitative autoradiography technique (Mugnaini et al., 1996). D-AP5, a selective N-methyl-D-aspartate (NMDA) receptor antagonist that competitively inhibits the glutamate binding site of NMDA receptors, can be studied by evoked electrical activity measurements. AP5 has been widely used to study the activity of NMDA receptors particularly with regard to researching synaptic plasticity, learning, and memory (Evans et al.,1982; Morris, 1989). The saturation binding of radioligands are used to measure the affinity (Kd) and density (Bmax) of kainate and AMPA receptors in striatum, cortex and hippocampus (Kürschner et al., 1998).

2. In silico: The prediction of NMDA receptor targeting is achievable by combining database mining, molecular docking, structure-based pharmacophore searching, and chemical similarity searching methods together (Neville and Lytton, 1999; Mazumder Borah, 2014)

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help

The major determinants for ligand e.g. for both co-agonist glycine binding and L-glutamate binding are well conserved between species from lower organism to mammals (reviewed in Xia and Chiang, 2009). PCR analysis, cloning and subsequent sequencing of the seal lion NMDA receptors showed 80% homology to those from rats, but more than 95% homologus to those from dogs (Gill et al., 2010).

References

List of the literature that was cited for this KE description. More help

(for Abstract and MIE)

Barenberg P, Strahlendorf H, Strahlendorf., Hypoxia induces an excitotoxic-type of dark cell degeneration in cerebellar Purkinje neurons. J. Neurosci Res. 2001, 40(3): 245-54.

Barria A, Malinow R. (2002) Subunit-specific NMDA receptor trafficking to synapses. Neuron 35: 345-353. Cohen S, Greenberg ME. (2008) Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Ann Rev Cell Dev Biol 24: 183-209.

Berman F.W. and T. F. Murray, “Domoic acid neurotoxicity in cultured cerebellar granule neurons is mediated predominantly by NMDA receptors that are activated as a consequence of excitatory amino acid release,” Journal of Neurochemistry, 1997, 69: 693–703.

Berman W.F., K. T. LePage, and T. F. Murray, Domoic acid neurotoxicity in cultured cerebellar granule neurons is controlled preferentially by the NMDA receptor Ca2+ influx pathway,” Brain Research, 2002, 924: 20–29.

Cohen S, Greenberg ME. (2008) Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Ann Rev Cell Dev Biol 24: 183-209.

Daoudal G, Debanne D, Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem., 2003, 10(6):456-65.

Dingledine R, Borges K, Bowie D, Traynelis SF., The glutamate receptor ion channels. Pharmacol Rev., 1999, 51: 7–61.

Evans, R.H., Francis, A.A., Jones, A.W., et al., The Effects of a Series of ω-Phosphonic α-Carboxylic Amino Acids on Electrically Evoked and Excitant Amino Acid-Induced Responses in Isolated Spinal Cord Preparations. Br J Pharmac., 1982, 75: 65-75.

Gill S, Goldstein T, Situ D, Zabka TS, Gulland FM, Mueller RW., Cloning and characterization of glutamate receptors in Californian sea lions (Zalophus californianus). Mar Drugs, 2010, 8: 1637-1649.

Glanzman DL., Associative learning: Hebbian flies. Curr Biol., 2005, 7: 15(11):R416-9.

Kürschner VC, Petruzzi RL, Golden GT, Berrettini WH, Ferraro TN., Kainate and AMPA receptor binding in seizure-prone and seizure-resistant inbred mouse strains. Brain Res. 1998, 5: 780-788.

Lantz SR, Mack CM, Wallace K, Key EF, Shafer TJ, Casida JE., Glufosinate binds N-methyl-D-aspartate receptors and increases neuronal network activity in vitro. Neurotoxicology, 2014, 45: 38-47.

Lefebvre KA, Robertson A., Domoic acid and human exposure risks: a review.Toxicon. 2010, 56: 218-30.

Luscher C. and Robert C. Malenka., NMDA Receptor-Dependent Long-Term Potentiation and Long-Term Depression (LTP/LTD). Cold Spring Harb Perspect Biol 2012, 4: a005710.

Matsumura N, Takeuchi C., Hishikawa K, Fujii T, Nakaki T., Glufosinate ammonium induces convulsion through N-methyl-D-aspartate receptors in mice. Neurosci Lett. 2001, 304: 123-5.

Mazumder MK, Borah A. Piroxicam inhibits NMDA receptor-mediated excitotoxicity through allosteric inhibition of the GluN2B subunit: an in silico study elucidating a novel mechanism of action of the drug. Med Hypotheses. 2014, 83(6): 740-6.

Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol. 2013, 698: 6-18.

Morris, RJ. Synaptic Plasticity and Learning: Selective Impairment of Learning in Rats and Blockade of Long-Term Potentiation in vivo by the N-Methyl-D-Aspartate Receptor Antagonist AP5. J Neurosci., 1989, 9: 3040-3057.

Mugnaini M, van Amsterdam FT, Ratti E, Trist DG, Bowery NG. Regionally different N-methyl-D-aspartate receptors distinguished by ligand binding and quantitative autoradiography of [3H]-CGP 39653 in rat brain.British Journal of Pharmacology, 1996, 119: 819–828.

Neville KR, Lytton WW. Potentiation of Ca2+ influx through NMDA channels by action potentials: a computer model. Neuroreport., 1999, 10(17): 3711-6.

Pulido OM., Domoic acid toxicologic pathology: a review. Mar Drugs., 2008, 6: 180-219.

Reynolds IJ, Palmer AM. Regional variations in [3H]MK801 binding to rat brain N-methyl-D-aspartate receptors. J Neurochem. 1991, 56(5):1731-40.

Subramaniam S, McGonigle P. Quantitative autoradiographic characterization of the binding of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine ([3H]MK-801) in rat brain: regional effects of polyamines. J Pharmacol Exp Ther. 1991, 256(2): 811-9.

Schrattenholz A, Soskic V., NMDA receptors are not alone: dynamic regulation of NMDA receptor structure and function by neuregulins and transient cholesterol-rich membrane domains leads to disease-specific nuances of glutamate-signalling.Curr Top Med Chem., 2006, 6(7):663-86.

Tovar KR, Westbrook GL. (1999) The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci. 19: 4180–4188.

Traynelis S, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev., 2010, 62: 405-496.

Watanabe KH, Andersen ME, Basu N, Carvan MJ 3rd, Crofton KM, King KA, Suñol C, Tiffany-Castiglioni E, Schultz IR. Defining and modeling known adverse outcome pathways: Domoic acid and neuronal signaling as a case study. Environ Toxicol Chem., 2011, 30: 9-21.

Xia S, Chiang AS. NMDA Receptors in Drosophila. In: Van Dongen AM, editor. Biology of the NMDA Receptor. Boca Raton (FL): CRC Press; 2009. Chapter 10. Available from: http://www.ncbi.nlm.nih.gov/books/NBK5286/

Retrieved from https://aopkb.org/aopwiki/index.php/?oldid=27027