To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:1028

Relationship: 1028

Title

The title of the KER should clearly define the two KEs being considered and the sequential relationship between them (i.e., which is upstream and which is downstream). Consequently all KER titles take the form “upstream KE leads to downstream KE”.  More help

Reduced, Posterior swim bladder inflation leads to Reduced, Swimming performance

Upstream event
Upstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help
Downstream event
Downstream event in the Key Event Relationship. On the KER page, clicking on the Event name under Upstream Relationship will bring the user to that individual KE page. More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

This table is automatically generated upon addition of a KER to an AOP. All of the AOPs that are linked to this KER will automatically be listed in this subsection. Clicking on the name of the AOP in the table will bring you to the individual page for that AOP. More help
AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Deiodinase 2 inhibition leading to increased mortality via reduced posterior swim bladder inflation adjacent Moderate Low Dries Knapen (send email) Open for adoption EAGMST Under Review
Deiodinase 1 inhibition leading to increased mortality via reduced posterior swim bladder inflation adjacent Moderate Low Dries Knapen (send email) Open for adoption EAGMST Under Review

Taxonomic Applicability

Select one or more structured terms that help to define the biological applicability domain of the KER. In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER. Authors can indicate the relevant taxa for this KER in this subsection. The process is similar to what is described for KEs (see pages 30-31 and 37-38 of User Handbook) More help
Term Scientific Term Evidence Link
zebrafish Danio rerio High NCBI
fathead minnow Pimephales promelas Moderate NCBI
bluefin tuna Thunnus thynnus Moderate NCBI
Dicentrarchus labrax Dicentrarchus labrax Moderate NCBI
Perca flavescens Perca flavescens Moderate NCBI
Salmo salar Salmo salar Moderate NCBI

Sex Applicability

Authors can indicate the relevant sex for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of the User Handbook). More help
Sex Evidence
Unspecific Moderate

Life Stage Applicability

Authors can indicate the relevant life stage for this KER in this subsection. The process is similar to what is described for KEs (see pages 31-32 of User Handbook). More help
Term Evidence
Embryo High

Key Event Relationship Description

Provide a brief, descriptive summation of the KER. While the title itself is fairly descriptive, this section can provide details that aren’t inherent in the description of the KEs themselves (see page 39 of the User Handbook). This description section can be viewed as providing the increased specificity in the nature of upstream perturbation (KEupstream) that leads to a particular downstream perturbation (KEdownstream), while allowing the KE descriptions to remain generalised so they can be linked to different AOPs. The description is also intended to provide a concise overview for readers who may want a brief summation, without needing to read through the detailed support for the relationship (covered below). Careful attention should be taken to avoid reference to other KEs that are not part of this KER, other KERs or other AOPs. This will ensure that the KER is modular and can be used by other AOPs. More help

Effects on swim bladder inflation can alter swimming performance and buoyancy of fish, which is essential for predator avoidance, energy sparing, migration, reproduction and feeding behaviour, resulting in increased mortality.

Evidence Supporting this KER

Assembly and description of the scientific evidence supporting KERs in an AOP is an important step in the AOP development process that sets the stage for overall assessment of the AOP (see pages 49-56 of the User Handbook). To do this, biological plausibility, empirical support, and the current quantitative understanding of the KER are evaluated with regard to the predictive relationships/associations between defined pairs of KEs as a basis for considering WoE (page 55 of User Handbook). In addition, uncertainties and inconsistencies are considered. More help

The weight of evidence supporting a direct linkage between these two KEs, i.e. reduced posterior swim bladder inflation and reduced swimming performance, is moderate.

Biological Plausibility
Define, in free text, the biological rationale for a connection between KEupstream and KEdownstream. What are the structural or functional relationships between the KEs? For example, there is a functional relationship between an enzyme’s activity and the product of a reaction it catalyses. Supporting references should be included. However, it is recognised that there may be cases where the biological relationship between two KEs is very well established, to the extent that it is widely accepted and consistently supported by so much literature that it is unnecessary and impractical to cite the relevant primary literature. Citation of review articles or other secondary sources, like text books, may be reasonable in such cases. The primary intent is to provide scientifically credible support for the structural and/or functional relationship between the pair of KEs if one is known. The description of biological plausibility can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured (see page 40 of the User Handbook for further information).   More help

The posterior chamber of the swim bladder has a function in regulating the buoyancy of fish (Roberston et al., 2007). Fish rely on the lipid and gas content in their body to regulate their position within the water column, with the latter being more efficient at increasing body buoyancy. Therefore, fish with functional swim bladders have no problem supporting their body (Brix 2002), while it is highly likely that impaired inflation severely impacts swimming performance, as has been suggested previously (Bagci et al., 2015; Hagenaars et al., 2014). Fish without a functional swim bladder are severely disadvantaged, making the likelihood of surviving smaller. Stoyek et al. (2011) showed that the posterior chamber volume is maintained at a stable level at varying pressures corresponding to varying depths through gas exchange with the anteror chamber.

Uncertainties and Inconsistencies
In addition to outlining the evidence supporting a particular linkage, it is also important to identify inconsistencies or uncertainties in the relationship. Additionally, while there are expected patterns of concordance that support a causal linkage between the KEs in the pair, it is also helpful to identify experimental details that may explain apparent deviations from the expected patterns of concordance. Identification of uncertainties and inconsistencies contribute to evaluation of the overall WoE supporting the AOPs that contain a given KER and to the identification of research gaps that warrant investigation (seep pages 41-42 of the User Handbook).Given that AOPs are intended to support regulatory applications, AOP developers should focus on those inconsistencies or gaps that would have a direct bearing or impact on the confidence in the KER and its use as a basis for inference or extrapolation in a regulatory setting. Uncertainties that may be of academic interest but would have little impact on regulatory application don’t need to be described. In general, this section details evidence that may raise questions regarding the overall validity and predictive utility of the KER (including consideration of both biological plausibility and empirical support). It also contributes along with several other elements to the overall evaluation of the WoE for the KER (see Section 4 of the User Handbook).  More help

Robertson et al., (2007) reported that the swim bladder only becomes functional as a buoyancy regulator when it is fully developed into a double-chambered swim bladder. This implies that effects on posterior chamber inflation would not directly result in effects on swimming capacity. However, it was also reported that gas in the swim bladder increases the buoyancy of zebrafish larvae already just after initial inflation, while it would be actively controlled only after 28–30 d post hatch. Therefore, an effect on swimming capacity is still likely.

Exposure of zebrafish embryos to 6-propylthiouracil (PTU) resulted in an effect on posterior chamber inflation, but did not result in a direct effect on the swimming distance in the larval stage (Stinckens et al., unpublished). Vergauwen et al. (2015) reported decreased swimming activity as well as impaired posterior chamber inflation after exposure to phenanthrene, a non-polar narcotic, but there was no significant difference between swimming activity of larvae with our without inflated posterior chamber within the same treatment. Possibly, the impact of baseline toxicity on respiration and energy metabolism was more important in decreasing swimming activity compared to impaired inflation of the posterior chamber.

It has been difficult to unambiguously attribute reduced swimming activity to impaired inflation of the posterior chamber, since swimming activity can be altered via different modes of action including altered energy metabolism, altered brain development and thus swimming behaviour. For example, the swimming activity of zebrafish larvae was reduced after 5 days of exposure to 2-mercaptobenzothiazole (MBT), while they had inflated posterior chambers.

Response-response Relationship
This subsection should be used to define sources of data that define the response-response relationships between the KEs. In particular, information regarding the general form of the relationship (e.g., linear, exponential, sigmoidal, threshold, etc.) should be captured if possible. If there are specific mathematical functions or computational models relevant to the KER in question that have been defined, those should also be cited and/or described where possible, along with information concerning the approximate range of certainty with which the state of the KEdownstream can be predicted based on the measured state of the KEupstream (i.e., can it be predicted within a factor of two, or within three orders of magnitude?). For example, a regression equation may reasonably describe the response-response relationship between the two KERs, but that relationship may have only been validated/tested in a single species under steady state exposure conditions. Those types of details would be useful to capture.  More help

Relations between reduced swim bladder inflation and reduced swimming performance are currently based on a binary observation of swim bladder inflation. Several studies have shown that larvae with inflated swim bladders have higher swiming activity compared to larvae that failed to inflate the swim bladder. No direct relationship between swim bladder surface (quantitative measure of swim bladder inflation) and swimming performance has been reported yet.

Time-scale
This sub-section should be used to provide information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). This can be useful information both in terms of modelling the KER, as well as for analyzing the critical or dominant paths through an AOP network (e.g., identification of an AO that could kill an organism in a matter of hours will generally be of higher priority than other potential AOs that take weeks or months to develop). Identification of time-scale can also aid the assessment of temporal concordance. For example, for a KER that operates on a time-scale of days, measurement of both KEs after just hours of exposure in a short-term experiment could lead to incorrect conclusions regarding dose-response or temporal concordance if the time-scale of the upstream to downstream transition was not considered. More help

The data of Michiels et al. (2017) and Stinckens et al. (unpublished) on swim bladder inflation and swimming activity have been collected on the same day. The process of posterior chamber inflation normally occurs during a specific developmental time frame, resulting in limited flexibility to explore temporal concordance. Based on the biologically plausible direct importance of swim bladder functionality to swimming performance, no lag is expected.

Known modulating factors
This sub-section presents information regarding modulating factors/variables known to alter the shape of the response-response function that describes the quantitative relationship between the two KEs (for example, an iodine deficient diet causes a significant increase in the slope of the relationship; a particular genotype doubles the sensitivity of KEdownstream to changes in KEupstream). Information on these known modulating factors should be listed in this subsection, along with relevant information regarding the manner in which the modulating factor can be expected to alter the relationship (if known). Note, this section should focus on those modulating factors for which solid evidence supported by relevant data and literature is available. It should NOT list all possible/plausible modulating factors. In this regard, it is useful to bear in mind that many risk assessments conducted through conventional apical guideline testing-based approaches generally consider few if any modulating factors. More help
Known Feedforward/Feedback loops influencing this KER
This subsection should define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits? In some cases where feedback processes are measurable and causally linked to the outcome, they should be represented as KEs. However, in most cases these features are expected to predominantly influence the shape of the response-response, time-course, behaviours between selected KEs. For example, if a feedback loop acts as compensatory mechanism that aims to restore homeostasis following initial perturbation of a KE, the feedback loop will directly shape the response-response relationship between the KERs. Given interest in formally identifying these positive or negative feedback, it is recommended that a graphical annotation (page 44) indicating a positive or negative feedback loop is involved in a particular upstream to downstream KE transition (KER) be added to the graphical representation, and that details be provided in this subsection of the KER description (see pages 44-45 of the User Handbook).  More help

Domain of Applicability

As for the KEs, there is also a free-text section of the KER description that the developer can use to explain his/her rationale for the structured terms selected with regard to taxonomic, life stage, or sex applicability, or provide a more generalizable or nuanced description of the applicability domain than may be feasible using standardized terms. More help

Taxonomic: Importance of proper functioning of the swim bladder for supporting natural swimming behaviour can be plausibly assumed to be generally applicable to fish possessing a posterior chamber. Evidence exists for a wide variety of freshwater and marine fish species.

Life stage: This KER is only applicable to early embryonic development, which is the period where the posterior swim bladder chamber inflates. To what extent fish can survive and swim with partly inflated swim bladders during later life stages is unknown.

Sex: This KE/KER is plausibly applicable to both sexes. Sex differences are not often investigated in tests using early life stages of fish. In Medaka, sex can be morphologically distinguished as soon as 10 days post fertilization. Females appear more susceptible to thyroid‐induced swim bladder dysfunction compared with males (Godfrey et al., 2019). In zebrafish and fathead minnow, it is currently unclear whether sex-related differences are important in determining the magnitude of the changes in this KE/KER. Zebrafish are undifferentiated gonochorists since both sexes initially develop an immature ovary (Maack and Segner, 2003). Immature ovary development progresses until approximately the onset of the third week. Later, in female fish immature ovaries continue to develop further, while male fish undergo transformation of ovaries into testes. Final transformation into testes varies among male individuals, however finishes usually around 6 weeks post fertilization. Since the posterior chamber inflates around 5 days post fertilization in zebrafish, when sex differentiation has not started yet, sex differences are expected to play a minor role. Fathead minnow gonad differentiation also occurs during larval development. Fathead minnows utilize a XY sex determination strategy and markers can be used to genotype sex in life stages where the sex is not yet clearly defined morphologically (Olmstead et al., 2011). Ovarian differentiation starts at 10 dph followed by rapid development (Van Aerle et al., 2004). At 25 dph germ cells of all stages up to the primary oocytes stage were present and at 120 dph, vitellogenic oocytes were present. The germ cells (spermatogonia) of the developing testes only entered meiosis around 90–120 dph. Mature testes with spermatozoa are present around 150 dph. Since the posterior chamber inflates around 6 days post fertilization (1 dph) in fathead minnows, sex differences are expected to play a minor role in the current AOP.

References

List of the literature that was cited for this KER description using the appropriate format. Ideally, the list of references should conform, to the extent possible, with the OECD Style Guide (OECD, 2015). More help

Bagci, E., Heijlen, M., Vergauwen, L., Hagenaars, A., Houbrechts, A.M., Esguerra, C.V.,Blust, R., Darras, V.M., Knapen, D., 2015. Deiodinase knockdown during earlyzebrafish development affects growth, development, energy metabolism,motility and phototransduction. PLoS One 10, e0123285, http://dx.doi.org/10.1371/journal.pone.0123285.

Brix O (2002) The physiology of living in water. In: Hart PJ, Reynolds J (eds) Handbook of Fish Biology and Fisheries, Vol. 1, pp. 70–96. Blackwell Publishing, Malden, USA.

Chatain, B., 1994. Abnormal swimbladder development and lordosis in sea bass (Dicentrarchus labrax) and sea bream (Sparus auratus). Aquaculture 119:371–379.

Czesny, S.J., Graeb, B.D.S., Dettmersn, J.M., 2005. Ecological consequences of swimbladder noninflation for larval yellow perch. Trans. Am. Fish. Soc. 134,1011–1020, http://dx.doi.org/10.1577/T04-016.1.

Godfrey A, Hooser B, Abdelmoneim A, Sepulveda MS. 2019. Sex-specific endocrine-disrupting effects of three halogenated chemicals in japanese medaka. Journal of Applied Toxicology. 39(8):1215-1223.

Goodsell, D.S., Morris, G.M., Olsen, A.J. 1996. Automated docking of fleixble ligands. Applications of Autodock. J. Mol. Recogonition, 9:1-5.

Hagenaars, A., Stinckens, E., Vergauwen, L., Bervoets, L., Knapen, D., 2014. PFOS affects posterior swim bladder chamber inflation and swimming performanceof zebrafish larvae. Aquat. Toxicol. 157, 225–235, http://dx.doi.org/10.1016/j.aquatox.2014.10.017.

Heijlen, M., Houbrechts, A., Bagci, E., Van Herck, S., Kersseboom, S., Esguerra, C., Blust, R., Visser, T., Knapen, D., Darras, V., 2014. Knockdown of type 3 iodothyronine deiodinase severely perturbs both embryonic and  early larval development in zebrafish. Endocrinology 155, 1547-1559.

Houbrechts, A.M., Delarue, J., Gabriels, I.J., Sourbron, J., Darras, V.M., 2016. Permanent Deiodinase Type 2 Deficiency Strongly Perturbs Zebrafish Development, Growth, and Fertility. Endocrinology 157, 3668-3681.

Kurata, M., Ishibashi, Y., Takii, K., Kumai, H., Miyashita, S., Sawada, Y., 2014.Influence of initial swimbladder inflation failure on survival of Pacific bluefintuna, Thuunus orientalis (Temminck and Schlegl) larvae. Aquacult. Res. 45,882–892.

Lindsey, B.W., Smith, F.M., Croll, R.P., 2010. From inflation to flotation: contributionof the swimbladder to whole-body density and swimming depth duringdevelopment of the zebrafish (Danio rerio). Zebrafish 7, 85–96, http://dx.doi.org/10.1089/zeb.2009.0616.

Maack, G., Segner, H., 2003. Morphological development of the gonads in zebrafish. Journal of Fish Biology 62, 895-906.

Massei R et al. (in preparation) Sublethal adverse effects of non-polar narcotics in the zebrafish embryo.

Michiels, E.D.G., Vergauwen, L., Hagenaars, A., Fransen, E., Van Dongen, S., Van Cruchten, S.J., Bervoets, L., Knapen, D., 2017. Evaluating Complex Mixtures in the Zebrafish Embryo by Reconstituting Field Water Samples: A Metal Pollution Case Study. International Journal of Molecular Sciences 18, 539.

Nagabhushana A, Mishra RK. 2016. Finding clues to the riddle of sex determination in zebrafish. Journal of Biosciences. 41(1):145-155.

Olmstead AW, Villeneuve DL, Ankley GT, Cavallin JE, Lindberg-Livingston A, Wehmas LC, Degitz SJ. 2011. A method for the determination of genetic sex in the fathead minnow, pimephales promelas, to support testing of endocrine-active chemicals. Environmental Science & Technology. 45(7):3090-3095.

Poppe, T.T., Hellberg, H., Griffiths, D., Mendal, H. 1977. Swim bladder abnormality in farmed Atlantic salmon, Salmo salar. Diseases of aquatic organisms 30:73-76.

Roberston, G.N., McGee, C.A.S., Dumbarton, T.C., Croll, R.P., Smith, F.M., 2007.Development of the swim bladder and its innervation in the zebrafish, Danio rerio. J. Morphol. 268, 967–985, http://dx.doi.org/10.1002/jmor.

Stewart, D.B., Gee, J.H., 1981. Mechanisms of buoyancy adjustments and effects of water velocity and temperature on ability to maintain buoyancy in fathead minnows, Pimephales promelas, Rafinesque. Comparative Biochemistry and Physiology a-Physiology 68, 337-347.

Stinckens, E., Vergauwen, L., Blackwell, B.R., Anldey, G.T., Villeneuve, D.L., Knapen, D., 2020. Effect of Thyroperoxidase and Deiodinase Inhibition on Anterior Swim Bladder Inflation in the Zebrafish. Environmental Science & Technology 54, 6213-6223.

Stinckens, E., Vergauwen, L., Schroeder, A.L., Maho, W., Blackwell, B., Witter, H.,Blust, R., Ankley, G.T., Covaci, A., Villenueve, D.L., Knapen, D., 2016. Disruption of thyroid hormone balance after 2-mercaptobenzothiazole exposure causes swim bladder inflation impairment—part II: zebrafish. Aquat. Toxicol. 173:204-17.

Stoyek, M.R., Smith, F.M., Croll, R.P., 2011. Effects of altered ambient pressure on the volume and distribution of gas within the swimbladder of the adult zebrafish, Danio rerio. Journal of Experimental Biology 214, 2962-2972.

van Aerle R, Runnalls TJ, Tyler CR. 2004. Ontogeny of gonadal sex development relative to growth in fathead minnow. Journal of Fish Biology. 64(2):355-369.

Vergauwen, L., Schmidt, S.N., Stinckens, E., Maho, W., Blust, R., Mayer, P., Covaci, A., Knapen, D., 2015. A high throughput passive dosing format for the Fish Embryo Acute Toxicity test. Chemosphere 139, 9-17.