This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Relationship: 1387


A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

T4 in serum, Decreased leads to Hippocampal gene expression, Altered

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes.Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Inhibition of Thyroperoxidase and Subsequent Adverse Neurodevelopmental Outcomes in Mammals non-adjacent High Low Kevin Crofton (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
rat Rattus norvegicus High NCBI
mouse Mus musculus High NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Male High
Female High

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
During brain development High

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

Many of the physiological effects of thyroid hormones (THs) are mediated through regulation of gene expression by zinc finger nuclear receptor proteins that are encoded by thyroid hormone genes alpha (Thra) and beta (Thrb). It is widely accepted that TH regulates gene transcription during brain development (Bernal, 2007; Anderson et al., 2003). The sole source of TH to the brain is from the circulating levels of the prohormone, thyroxine (T4). Once taken up from the serum to reach the brain, T4 is converted to triiodothyronine (T3) which binds to TH nuclear receptors (TRα and TRβ). On binding, and in the presence of regulatory cofactors, transcription of certain genes is either up- or down-regulated (Oppenheimer, 1983). However, only a small number of genes have been shown to be directly influenced by TH receptor binding, and of these, most are transcription factors (Quignodon et al., 2008; Thompson and Potter, 2000; Horn and Heuer, 2010). In this manner, THs do influence a wide variety of genes.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER. For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help

The weight of evidence for this indirect relationship is strong. It is well established that serum TH is the primary source of brain T4 from which neuronal T3, the active hormone, is locally generated and presented to the receptors in the nucleus of neurons to control gene transcription.

Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

The biological plausibility of this KER is rated as strong. This is consistent with the known biology of the relationship between serum TH concentrations and brain TH concentrations, and the known action of TH to mediate gene transcription in brain and many other tissues.

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

There are no inconsistencies in this KER, but there are some uncertainties. It is widely accepted that changes in serum THs will result in alterations in hippocampal gene expression. Several different animal models have been used to manipulate serum TH concentrations that also measure gene expression changes. Varying windows of exposure to TH disruption and developmental sample time and region examined have also varied across studies. However, dose-response data is lacking. Most investigations of hippocampal gene expression have employed treatments that induce severe hormone reductions induced by PTU or MMI, or by thyroidectomy. In addition, few reports have studied the genes in the hippocampus, the cortex being more accessible in young animals. Finally, when the hippocampus is the target, different genes at different ages are reported, making it difficult to compare findings.

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help

There are no quantitative models that predict the degree of serum TH reduction that is required to alter hippocampal gene transcription. Most investigations for hippocampus have been conducted in the neonate after severe hormone reductions. Only four publications have reported dose-dependent effects on gene expression in at less than maximal hormone depletion (Bastian et al., 2012; 2014; O'Shaughnessy et al., 2018; Royland et al., 2008). O'Shaughnessy et al (2018) demostrates dose-response relationships between cortical T4 and T3 concentrations and changes in a variety of neocortical genes (e.g., Parv, Col11a2, Hr, Ngf) that were "statistically significant at doses that decreased brain t4 and/or T3". There was no quantitation of this relationship reported.

In addition, there is very little known about whether compensatory processes are available in the developing hippocampus that may modulate the impact of serum levels on hippocampal gene transcription. These available data suggest that a 40-50% decrement in serum T4 in the pup, is sufficient to observe changes in hippocampal gene expression.  This is similar to finding for loss of hearing function in rats following postnatal chemical-induced hypothyroxinemia (Crofton, 2004).

Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

Most of the data available has come from rodent models.


List of the literature that was cited for this KER description. More help

Alvarez-Dolado M, Ruiz M, Del Rio JA, Alcantara S, Burgaya F, Sheldon M, Nakajima K, Bernal J, Howell BW, Curran T, Soriano E, Munoz A (1999) Thyroid hormone regulates reelin and dab1 expression during brain development. J Neurosci 19:6979-6993.

Anderson GW, Schoonover CM, Jones SA (2003) Control of thyroid hormone action in the developing rat brain. Thyroid 13:1039-56.

Bastian TW, Anderson JA, Fretham SJ, Prohaska JR, Georgieff MK, Anderson GW (2012), Fetal and neonatal iron deficiency reduces thyroid hormone-responsive gene mRNA levels in the neonatal rat hippocampus and cerebral cortex. Endocrinology 153:5668-5680.

Bastian TW, Prohaska JR, Georgieff MK, Anderson GW. 2014. Fetal and neonatal iron deficiency exacerbates mild thyroid hormone insufficiency effects on male thyroid hormone levels and brain thyroid hormone-responsive gene expression. Endocrinology. 155:1157-1167.

Bernal J. 2007. Thyroid hormone receptors in brain development and function. Nature clinical practice Endocrinology & metabolism. 3:249-259.

Cayrou C, Denver RJ, Puymirat J. Suppression of the basic transcription element-binding protein in brain neuronal cultures inhibits thyroid hormone-induced neurite branching. Endocrinology. 2002 Jun;143(6):2242-9.

Crofton KM. Developmental disruption of thyroid hormone: correlations with hearing dysfunction in rats. Risk Anal. 2004 Dec;24(6):1665-71.

Denver RJ, Ouellet L, Furling D, Kobayashi A, Fujii-Kuriyama Y, Puymirat J. Basic transcription element binding protein (BTEB) is a thyroid hormone-regulated gene in the developing central nervous system. Evidence for a role in neurite outgrowth. J Biol Chem. 1999 Aug 13;274(33):23128-34.

Denver RJ, Williamson KE (2009) Identification of a thyroid hormone response element in the mouse Kruppel-like factor 9 gene to explain its postnatal expression in the brain. Endocrinology 150:3935-3943.

Dong J, Liu W, Wang Y, Xi Q, Chen J. 2010. Hypothyroidism following developmental iodine deficiency reduces hippocampal neurogranin, CaMK II and calmodulin and elevates calcineurin in lactational rats. International journal of developmental neuroscience 28:589-596.

Dong H, You SH, Williams A, Wade MG, Yauk CL, Thomas Zoeller R (2015) Transient Maternal Hypothyroxinemia Potentiates the Transcriptional Response to Exogenous Thyroid Hormone in the Fetal Cerebral Cortex Before the Onset of Fetal Thyroid Function: A Messenger and MicroRNA Profiling Study. Cereb Cortex 25:1735-1745.

Dowling AL, Zoeller RT. Thyroid hormone of maternal origin regulates the expression of RC3/neurogranin mRNA in the fetal rat brain. Brain research Molecular brain research. 2000. 82:126-132.

Gil-Ibanez P, Garcia-Garcia F, Dopazo J, Bernal J, Morte B. 2015. Global Transcriptome Analysis of Primary Cerebrocortical Cells: Identification of Genes Regulated by Triiodothyronine in Specific Cell Types. Cerebral cortex. Nov 2.

Horn S. and Heuer H. Thyroid hormone action during brain development: more questions than answers. Mol Cell Endocrinol. 2010 Feb 5;315(1-2):19-26.

Ibarrola N, Rodriguez-Pena A (1997) Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development. Brain Res 752:285-293.

Iñiguez MA, Rodriguez-Peña A, Ibarrola N, Aguilera M, Muñoz A, Bernal J. Thyroid hormone regulation of RC3, a brain-specific gene encoding a protein kinase-C substrate. Endocrinology. 1993 Aug;133(2):467-73.

Mohan V, Sinha RA, Pathak A, Rastogi L, Kumar P, Pal A, Godbole MM (2012) Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis. Exp Neurol 237:477-488.

Morte B, Diez D, Auso E, Belinchon MM, Gil-Ibanez P, Grijota-Martinez C, Navarro D, de Escobar GM, Berbel P, Bernal J) Thyroid hormone regulation of gene expression in the developing rat fetal cerebral cortex: prominent role of the Ca2+/calmodulin-dependent protein kinase IV pathway. Endocrinology 2010a. 151:810-820.

Morte B, Ceballos A, Diez D, Grijota-Martinez C, Dumitrescu AM, Di Cosmo C, Galton VA, Refetoff S, Bernal J. Thyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormone: a study in monocarboxylate transporter-8- and deiodinase-2-deficient mice. Endocrinology. 2010b. 151:2381-2387.

Navarro D, Alvarado M, Morte B, Berbel D, Sesma J, Pacheco P, Morreale de Escobar G, Bernal J, Berbel P.  Late Maternal Hypothyroidism Alters the Expression of Camk4 in Neocortical Subplate Neurons: A Comparison with Nurr1 Labeling. Cereb Cortex 2014. 10:2694-2706.

Oppenheimer J. The nuclear-receptor-triiodothyronine complex: Relationship to thyroid hormone distribution, metabolism, and biological action, In: Samuels HH, eds: Molecular Basis of Thyroid Hormone Action. Academic Press: New York. 1983: 1-34.

Pathak A, Sinha RA, Mohan V, Mitra K, Godbole MM (2011). Maternal thyroid hormone before the onset of fetal thyroid function regulates reelin and downstream signaling cascade affecting neocortical neuronal migration. Cereb Cortex 21:11-21.

Quignodon L, et al. Thyroid hormone signaling is highly heterogeneous during pre- and postnatal brain development. J Mol Endocrinol 2004, 33(2), 467-476.

Royland JE, Parker JS, Gilbert ME. A genomic analysis of subclinical hypothyroidism in hippocampus and neocortex of the developing rat brain. J Neuroendocrinol. 2008 Dec;20(12):1319-38.

Seed J, Carney EW, Corley RA, Crofton KM, DeSesso JM, Foster PM, Kavlock R, Kimmel G, Klaunig J, Meek ME, Preston RJ, Slikker W Jr, Tabacova S, Williams GM, Wiltse J, Zoeller RT, Fenner-Crisp P, Patton DE.  Overview: Using mode of action and life stage information to evaluate the human relevance of animal toxicity data. Crit Rev Toxicol. 2005 35:664-72.

Shiraki A, Saito F, Akane H, Takeyoshi M, Imatanaka N, Itahashi M, Yoshida T, Shibutani M (2014) Expression alterations of genes on both neuronal and glial development in rats after developmental exposure to 6-propyl-2-thiouracil. Toxicol Lett 228:225-234.

Thompson CC, Potter GB. Thyroid hormone action in neural development. Cereb Cortex 2000, 10(10), 939-945.