This Key Event Relationship is licensed under the Creative Commons BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.

Relationship: 1717

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Histone deacetylase inhibition leads to Testicular atrophy

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes.Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Histone deacetylase inhibition leading to testicular atrophy non-adjacent Moderate Moderate Shihori Tanabe (send email) Open for citation & comment WPHA/WNT Endorsed

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
Homo sapiens Homo sapiens High NCBI
Rattus norvegicus Rattus norvegicus High NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Male High

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
Adult, reproductively mature High

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

HDAC inhibition induced testicular toxicity including testis atrophy such as the decrease in size [Miller et al., 1982]. HDAC inhibition in cell culture resulted in testicular toxicity including germ cell apoptosis and cell morphology change [Li et al., 1996]. Valproic acid, an HDAC inhibitor, caused a reduced testicular weight in the offspring in rats [Kallen, 2004].

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER. For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help
Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

The HDAC inhibition induced cell death in spermatocytes in both rat and human seminiferous tubules [Li et al., 1996]. The HDAC inhibitor treatment resulted in degeneration in spermatocytes in rat seminiferous tubules [Li et al., 1996]. The HDAC inhibition induced germ cell apoptosis in human testicular tissues [Li et al., 1996].

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

It is reported that HDAC inhibition leads to teratogenic toxicity, whereas the correlation between testicular toxicity and teratogenic toxicity by HDAC inhibition is not fully understood [Menegola et al., 2006]. The oral administration of vorinostat (SAHA), an HDAC inhibitor, in Sprague-Dawley rats showed no indication of reproductive toxicity in drug-treated male rats, which suggested the involvement of some compensation mechanisms or digestion [Wise et al., 2008]. Some studies have demonstrated that the decrease in histone acetylation in spermatids is associated with impaired spermatogenesis corresponding with the well-known reduction of protamine expression in the cells [Sonnack et al., 2002; Li et al., 2014]. It has also been reported that the histological examination of sections revealed no difference between wild-type and HDAC6-deficient testes [Zhang et al., 2008].

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help
Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help

The relative testicular weight was decreased at day 2 after the treatment of 500 mg/kg/day treatment of ethylene glycol monomethyl ether [Foster et al., 1984]. The treatment of 5 mM MAA for 5 hrs induced the pachytene spermatocyte death in early-stage tubules in 19 hrs [Li et al., 1996]. The degeneration in late spermatocytes was observed in late-stage tubules in 19 hrs after 5 mM MAA treatment for 5 hrs [Li et al., 1996].

Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

MAA induced spermatocyte apoptosis and cell morphology change in human testes (Homo sapiens) [Li et al., 1996].

Valproic acid caused the decrease in rat testicular weight (Rattus norvegicus) [Kallen, 2004].

 

References

List of the literature that was cited for this KER description. More help

Barone, F. et al. (2005), "Modulation of MAA-induced apoptosis in male germ cells: role of Sertoli cell P/Q-type calcium channels", Reprod Biol Endocrinol 3:13

Foster, P.M. et al. (1983), "Testicular toxicity of ethylene glycol monomethyl and monoethyl ethers in the rat", Toxicol Appl Pharmacol 69:385-399

Foster, P.M. et al. (1984), "Testicular toxicity produced by ethylene glycol monomethyl and monoethyl esters in the rat", Environ Health Perspect 57:207-217

Kallen, B. (2004), "Valproic acid is known to cause hypospadias in man but does not reduce anogenital distance or causes hypospadias in rats", Basic Clin Pharmacol Toxicol 94:51-54

Li, L.H. et al. (1996), "2-Methoxyacetic acid (MAA)-induced spermatocyte apoptosis in human and rat testes: an in vitro comparison", J Androl 17:538-549

Li, W. et al. (2014), "Chd5 orchestrates chromatin remodeling during sperm development", Nat Commun 5:3812

Menegola, E. et al. (2006), "Inhibition of histone deacetylase as a new mechanism of teratogensis", Birth Defects Res 78:345-353

Miller, R.R. et al. (1982), "Toxicity of methoxyacetic acid in rats", Fundam Appl Toxicol 2:158-160

Moss, E.J. et al. (1985), "The role of metabolism in 2-methoxyethanol-induced testicular toxicity", Toxicol Appl Pharmacol 79:480-489

Sonnack, V. et al. (2002), "Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis", Andrologia. 34:384-390

Wade, M.G. et al. (2008), "Methoxyacetic acid-induced spermatocyte death is associated with histone hyperacetylation in rats", Biol Reprod 78:822-831

Wise, L.D. et al. (2008), "Assessment of female and male fertility in Sprague-Dawley rats administered vorinostat, a histone deacetylase inhibitor", Birth Defects Res B Dev Reprod Toxicol 83:19-26

Zhang, Y. et al. (2008), "Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally", Mol Cel Biol 28:1688-1701