This AOP is licensed under the BY-SA license. This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.
AOP: 188
Title
Iodotyrosine deiodinase (IYD) inhibition leading to altered amphibian metamorphosis
Short name
Graphical Representation
Point of Contact
Contributors
- Jonathan Haselman
Coaches
OECD Information Table
OECD Project # | OECD Status | Reviewer's Reports | Journal-format Article | OECD iLibrary Published Version |
---|---|---|---|---|
1.29 |
This AOP was last modified on April 29, 2023 16:02
Revision dates for related pages
Page | Revision Date/Time |
---|---|
Inhibition, Iodotyrosine deiodinase (IYD) | September 16, 2017 10:17 |
Decrease of Thyroidal iodide | April 04, 2019 09:00 |
Thyroid hormone synthesis, Decreased | November 04, 2022 09:25 |
Altered, Amphibian metamorphosis | September 02, 2020 11:19 |
Thyroxine (T4) in serum, Decreased | October 10, 2022 08:52 |
Inhibition, Iodotyrosine deiodinase (IYD) leads to Thyroidal Iodide, Decreased | December 03, 2016 16:38 |
Thyroidal Iodide, Decreased leads to TH synthesis, Decreased | June 04, 2018 06:11 |
Inhibition, Iodotyrosine deiodinase (IYD) leads to T4 in serum, Decreased | September 09, 2021 05:27 |
TH synthesis, Decreased leads to T4 in serum, Decreased | October 10, 2022 08:56 |
T4 in serum, Decreased leads to Altered, Amphibian metamorphosis | August 25, 2020 16:43 |
Abstract
This putative adverse outcome pathway describes the linkage between inhibition of iodotyrosine deiodinase (dehalogenase, IYD) and altered amphibian metamorphosis. Initial development of this AOP is based largely on IYD literature of clinical evidence in humans, rat model experiments, and biochemical and genetic analyses. The enzyme IYD catalyzes the recycling of iodide from the byproducts of thyroid hormone (TH) synthesis [monoiodotyrosine (MIT) and diiodotyrosine (DIT)] within the thyroid gland as well as other organs, including liver and kidney. IYD protects against excretion of critical iodide and promotes accumulation of iodide in thyroid follicular cells for TH synthesis, which is especially critical for low iodine diets and low iodine environments (including most freshwater ecosystems). Therefore, failure or chemical inhibition of IYD could reduce TH synthesis, resulting in TH insufficiency in tissues and subsequent altered development. Failure of this enzyme in humans, due to mutations in the IYD gene (DEHAL1), has been shown to have negative developmental consequences, including hypothyroidism, goiter, and mental retardation. In rat exposures with suspected IYD inhibitors, serum T4 and T3 were reduced, thyroid gland size and TSH increased, and weight gain was reduced. Additionally, IYD has been shown to be a potential chemical target for thyroid axis disruption through in vitro inhibition assays with polychlorinated biphenyls, polybrominated diphenyl ethers, agrichemicals, antiparasitics, pharmaceuticals, and food colorants. This molecular initiating event, inhibition of IYD, may have broad taxonomic applicability; IYD genes are highly conserved across a wide range of multicellular organisms with evidence that iodide salvage is important for many species.
AOP Development Strategy
Context
Strategy
Summary of the AOP
Events:
Molecular Initiating Events (MIE)
Key Events (KE)
Adverse Outcomes (AO)
Type | Event ID | Title | Short name |
---|
MIE | 1152 | Inhibition, Iodotyrosine deiodinase (IYD) | Inhibition, Iodotyrosine deiodinase (IYD) |
KE | 425 | Decrease of Thyroidal iodide | Thyroidal Iodide, Decreased |
KE | 277 | Thyroid hormone synthesis, Decreased | TH synthesis, Decreased |
KE | 281 | Thyroxine (T4) in serum, Decreased | T4 in serum, Decreased |
AO | 1101 | Altered, Amphibian metamorphosis | Altered, Amphibian metamorphosis |
Relationships Between Two Key Events (Including MIEs and AOs)
Title | Adjacency | Evidence | Quantitative Understanding |
---|
Inhibition, Iodotyrosine deiodinase (IYD) leads to Thyroidal Iodide, Decreased | adjacent | Low | Low |
Thyroidal Iodide, Decreased leads to TH synthesis, Decreased | adjacent | High | Moderate |
TH synthesis, Decreased leads to T4 in serum, Decreased | adjacent | High | High |
Inhibition, Iodotyrosine deiodinase (IYD) leads to T4 in serum, Decreased | non-adjacent | Moderate | Moderate |
T4 in serum, Decreased leads to Altered, Amphibian metamorphosis | non-adjacent | High | High |
Network View
Prototypical Stressors
Life Stage Applicability
Life stage | Evidence |
---|---|
Development | High |
Taxonomic Applicability
Term | Scientific Term | Evidence | Link |
---|---|---|---|
African clawed frog | Xenopus laevis | Low | NCBI |
Sex Applicability
Sex | Evidence |
---|---|
Unspecific | High |
Overall Assessment of the AOP
Domain of Applicability
Essentiality of the Key Events
Evidence Assessment
Known Modulating Factors
Quantitative Understanding
Considerations for Potential Applications of the AOP (optional)
References
Afink, G.; Kulik, W.; Overmars, H.; de Randamie, J.; Veenboer, T.; van Cruchten, A.; Craen, M.; Ris-Stalpers, C. (2008). Molecular characterization of iodotyrosine dehalogenase deficiency in patients with hypothyroidism. Journal of Clinical Endocrinology and Metabolism, 93, 4894-4901.
Fujimoto, K.; Matsuura, K.; Das, B.; Fu, L.; Shi, Y-B. (2012). Direct activation of Xenopus iodotyrosine deiodinase by thyroid hormone receptor in the remodeling intestine during amphibian metamorphosis. Endocrinology, 153, 5082-5089.
Gaupale, T.; Mathi, A.; Ravikuma, A.; Bhargave, S. (2009). Localization and enzyme activity Iodotyrosine dehalogenase 1 during metamorphosis of frog Microhyla ornata. Trends in Comparative Endocrinology and Neurobiology, 1163, 402-406.
Green, W.L. (1971). Effects of 3-nitro-L-tyrosine on thyroid function in the rat: an experimental model for the dehalogenase defect. The Journal of Clinical Investigation, 50, 2474-2484.
Moreno, J.; Klootwijk, W.; van Toor, H.; Pinto, G.; D’Alessandro, M.; Leger, A.; Goudie, D.; Polak, M.; Gruters, A.; Visser, T. (2008). Mutations in the iodotyrosine deiodinase gene and hypothyroidism. The New England Journal of Medicine, 358, 1811-1818
Meinhold, H.; Buchholz, R. (1983). Effects of iodotyrosine deiodinase inhibition on serum concentrations and turnover of diiodotyrosine (DIT) and thyrosine (T4) in the rat. Acta endocrinologica, 103, 521-527.
Phatarphekar, A.; Buss, J.; Rokita, S. (2014). Iodotyrosine deiosinase: a unique flavoprotein present in organisms of diverse phyla. Molecular Biosystems, 10, 86-92.
Shimizu, R.; Yamaguchi, M.; Uramaru, N.; Kuroki, H.; Ohta, S.; Kitamura, S.; Sugihara, K. (2013). Structure-activity relationships of 44 halogenated compounds for iodotyrosine deiodinase-inhibitory activity. Toxicology, 314, 22-29.