Relationship: 305



TH synthesis, Decreased leads to T4 in serum, Decreased

Upstream event


TH synthesis, Decreased

Downstream event


T4 in serum, Decreased

Key Event Relationship Overview


AOPs Referencing Relationship


Taxonomic Applicability


Term Scientific Term Evidence Link
human Homo sapiens Strong NCBI
rat Rattus norvegicus Strong NCBI
mouse Mus musculus Strong NCBI
Xenopus laevis Xenopus laevis Strong NCBI

Sex Applicability


Sex Evidence
Male Strong
Female Strong

Life Stage Applicability


Term Evidence
All life stages Strong

How Does This Key Event Relationship Work


Thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3), are synthesized by TPO in the thyroid gland as iodinated thyroglobulin (Tg) and stored in the colloid of thyroid follicles. Secretion from the follicle into serum is a multi-step process. The first involves thyroid stimulating hormone (TSH) stimulation of the separation of the peptide linkage between Tg and TH. The next steps involve endocytosis of colloid, fusion of the endosome with the basolateral membrane of the thyrocyte, and finally release of TH into blood. More detailed descriptions of this process can be found in reviews by Braverman and Utiger (2012) and Zoeller et al. (2007).

Weight of Evidence


The weight of evidence linking these two KEs of decreased TH synthesis and decreased T4 in serum is strong. It is commonly accepted dogma that decreased synthesis in the thyroid gland will result in decreased circulating TH.

Biological Plausibility


The biological relationship between two KEs in this KER is well understood and documented fact within the scientific community.

Empirical Support for Linkage


It is widely accepted that TPO inhibition leads to declines in serum T4 levels in adult mammals. This is due to the fact that the sole source for circulating T4 derives from hormone synthesis in the thyroid gland. Indeed, it has been known for decades that insufficient dietary iodine will lead to decreased serum TH concentrations due to inadequate synthesis. Strong qualitative and quantitative relationships exist between reduced TH synthesis and reduced serum T4 (Ekerot et al., 2013; Degon et al., 2008; Cooper et al., 1982; 1983; Leonard et al., 2016; Zoeller and Tan, 2007).  There is more limited evidence supporting the relationship between decreased TH synthesis and lowered circulating hormone levels during development.  Lu and Anderson (1994) followed the time course of TH synthesis, measured as thyroxine secretion rate, in non-treated pregnant rats and correlated it with serum T4 levels More recently, modeling of TH in the rat fetus demonstrates the quantitative relationship between TH synthesis and serum T4 concentrations (Hassan et al., 2017). a Furthermore, a wide variety of drugs and chemicals that inhibit TPO are known to result in decreased release of TH from the thyroid gland, as well as decreased circulating TH concentrations. This is evidenced by a very large number of studies that employed a wide variety of techniques, including thyroid gland explant cultures, tracing organification of 131-I and in vivo treatment of a variety of animal species with known TPO inhibitors (King and May,1984; Atterwill et al., 1990; Brown et al., 1986; Brucker-Davis, 1998; Hornung et al., 2010; Hurley et al., 1998; Kohrle, 2008).

Temporal Evidence: :  The temporal nature of this KER is applicable to all life stages, including development (Seed et al., 2005).  There are currently no studies that measured both TPO synthesis and TH production during development. However, the impact decreased TH synthesis on serum hormones is similar across all ages. Good evidence for the temporal relationship comes from thyroid system modeling (e.g., Degon et al., 2008; Fisher et al., 2013). In addition, recovery experiments have demonstrated that serum thyroid hormones recovered in athyroid mice following grafting of in-vitro derived follicles (Antonica et al., 2012).   

Dose-response Evidence: Dose-response data is lacking from studies that include concurrent measures of both TH synthesis and serum TH concentrations. However, data is available demonstrating correlations between thyroidal TH and serum TH concentrations during gestation and lactation during development (Gilbert et al., 2013).  This data was used to develop a rat quantitative biologically-based dose-response model for iodine deficiency (Fisher et al., 2013).

Uncertainties or Inconsistencies


There are no inconsistencies in this KER, but there are some uncertainties. The first uncertainty stems from the paucity of data for quantitative modeling of the relationship between the degree of synthesis decrease and resulting changes in circulating T4 concentrations. In addition, most of the data supporting this KER comes from inhibition of TPO or NIS, and there are a number of other processes (e.g., endocytosis, lysosomal fusion, basolateral fusion and release) that are not as well studied.

Quantitative Understanding of the Linkage


Fisher et al. (2013) published a quantitative biologically-based dose-response model for iodine deficiency in the rat. This model provides quantitative relationships for thyroidal T4 synthesis (iodine organification) and predictions of serum T4 concentrations in developing rats. There are other computational models that include thyroid hormone synthesis. Ekerot et al. (2012) modeled TPO, T3, T4 and TSH in dogs and humans based on exposure to myeloperoxidase inhibitors that also inhibit TPO.  This model was recently adapted for rat (Leonard et al., 2016) and Hassan et al (2017) have extended it to include the pregnant rat dam in response to TPO inhibition induced by PTU. While the original model predicted serum TH and TSH levels as a function of oral dose, it was not used to explicitly predict the relationship between serum hormones and TPO inhibition, or thyroidal hormone synthesis. Leonard et al. (2016) recently incorporated TPO inhibition into the model. Degon et al (2008) developed a human thyroid model that includes TPO, but does not make quantitative prediction of organification changes due to inhibition of the TPO enzyme.

Evidence Supporting Taxonomic Applicability


While a majority of the empirical evidence comes from work with laboratory rodents, there is a large amount of supporting data from humans (with anti-hyperthyroidism drugs including propylthiouracil and methimazole), some amphibian species (e.g., frog), and some avian species (e.g, chicken).  The following ares samples from a large literature that supports this concept: Cooper et al. (1982; 1983); Hornung et al. (2010); Van Herck et al. (2013); Paul et al. (2013);  Alexander et al. (2017).



Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, Grobman WA, Laurberg P, Lazarus JH, Mandel SJ, Peeters RP, Sullivan S.  2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid. 2017 Mar;27(3):315-389.

Antonica F, Kasprzyk DF, Opitz R, Iacovino M, Liao XH, Dumitrescu AM, Refetoff S, Peremans K, Manto M, Kyba M, Costagliola S.  Generation of functional thyroid from embryonic stem cells.  Nature. 2012 491(7422):66-71.

Atterwill CK, Fowler KF. A comparison of cultured rat FRTL-5 and porcine thyroid cells for predicting the thyroid toxicity of xenobiotics. Toxicol In Vitro. 1990. 4(4-5):369-74.

Braverman, L.E. and Utiger, R.D. (2012). Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text (10 ed.). Philadelphia, PA: Lippincott Williams & Wilkins. pp. 775-786. ISBN 978-1451120639.

Brown CG, Fowler KL, Nicholls PJ, Atterwill C. Assessment of thyrotoxicity using in vitro cell culture systems. Food Chem Toxicol. 1986 24(6-7):557-62.

Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. Thyroid. 1998 8(9):827-56.

Calil-Silveira J, Serrano-Nascimento C, Laconca RC, Schmiedecke L, Salgueiro RB, Kondo AK, Nunes MT. (2016). Underlying Mechanisms of Pituitary-Thyroid Axis Function Disruption by Chronic Iodine Excess in Rats. Thyroid. Oct;26(10):1488-1498.

Cooper DS, Kieffer JD, Halpern R, Saxe V, Mover H, Maloof F, Ridgway EC (1983) Propylthiouracil (PTU) pharmacology in the rat. II. Effects of PTU on thyroid function. Endocrinology 113:921-928.

Cooper DS, Saxe VC, Meskell M, Maloof F, Ridgway EC.Acute effects of propylthiouracil (PTU) on thyroidal iodide organification and peripheral iodothyronine deiodination: correlation with serum PTU levels measured by radioimmunoassay. J Clin Endocrinol Metab. 1982 54(1):101-7.

Degon, M., Chipkin, S.R., Hollot, C.V., Zoeller, R.T., and Chait, Y. (2008). A computational model of the human thyroid. Mathematical Biosciences 212, 22–53

Dong X, Dong J, Zhao Y, Guo J, Wang Z, Liu M, Zhang Y, Na X. (2017). Effects of Long-Term In Vivo Exposure to Di-2-Ethylhexylphthalate on Thyroid Hormones and the TSH/TSHR Signaling Pathways in Wistar Rats. Int J Environ Res Public Health. Jan 4;14(1). pii: E44.

Ekerot P, Ferguson D, Glämsta EL, Nilsson LB, Andersson H, Rosqvist S, Visser SA. Systems pharmacology modeling of drug-induced modulation of thyroid hormones in dogs and translation to human. Pharm Res. 2013 30(6):1513-24.

Fisher JW, Li S, Crofton K, Zoeller RT, McLanahan ED, Lumen A, Gilbert ME.  Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose-response model. Toxicol Sci. 2013 132(1):75-86.

Gilbert ME. (2004). Alterations in synaptic transmission and plasticity in area CA1 of adult hippocampus following developmental hypothyroidism. Brain Res Dev Brain Res 148:11-18.

Gilbert ME, Hedge JM, Valentín-Blasini L, Blount BC, Kannan K, Tietge J, Zoeller RT, Crofton KM, Jarrett JM, Fisher JW.  An animal model of marginal iodine deficiency during development: the thyroid axis and neurodevelopmental outcome.  Toxicol Sci. 2013 132(1):177-95.

Hassan, I, El-Masri, H., Kosian, PA, Ford, J, Degitz, SJ and Gilbert, ME. Quantitative adverse outcome pathway for neurodevelopmental effects of thyroid peroxidase-induced thyroid hormone synthesis inhibition. Toxicological Sciences, kfx163, https://doi.org/10.1093/toxsci/kfx163 2017, in press.

Hornung MW, Degitz SJ, Korte LM, Olson JM, Kosian PA, Linnum AL, Tietge JE.Inhibition of thyroid hormone release from cultured amphibian thyroid glands by methimazole, 6-propylthiouracil, and perchlorate. Toxicol Sci. 2010 118(1):42-51.

Hurley PM. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents. Environ Health Perspect. 1998 106(8):437-45.

King DB, May JD. Thyroidal influence on body growth. J Exp Zool. 1984 Dec;232(3):453-60.

Köhrle J. Environment and endocrinology: the case of thyroidology. Ann Endocrinol (Paris). 2008 69(2):116-22.

Leonard JA, Tan YM, Gilbert M, Isaacs K, El-Masri H. Estimating margin of exposure to thyroid peroxidase inhibitors using high-throughput in vitro data, high-throughput exposure modeling, and physiologically based pharmacokinetic/pharmacodynamic modeling. Toxicol Sci. 2016 151(1):57-70.

Lewandowski TA1, Seeley MR, Beck BD. (2004). Interspecies differences in susceptibility to perturbation of thyroid homeostasis: a case study with perchlorate. Regul Toxicol Pharmacol. Jun;39(3):348-62.

Liu C, Wang C, Yan M, Quan C, Zhou J, Yang K. (2012). PCB153 disrupts thyroid hormone homeostasis by affecting its biosynthesis, biotransformation, feedback regulation, and metabolism. Horm Metab Res. Sep;44(9):662-9.

Lu, M-H, and Anderson, RR. Thyroxine secretion rats during pregnancy in the rat.  Endo Res. 1994. 20(4):343-364.

Paul KB, Hedge JM, Macherla C, Filer DL, Burgess E, Simmons SO, Crofton KM, Hornung MW. Cross-species analysis of thyroperoxidase inhibition by xenobiotics demonstrates conservation of response between pig and rat. Toxicology. 2013. 312:97-107.

Pearce EN, Alexiou M, Koukkou E, Braverman LE, He X, Ilias I, Alevizaki M, Markou KB. (2012). Perchlorate and thiocyanate exposure and thyroid function in first-trimester pregnant women from Greece. Clin Endocrinol (Oxf). Sep;77(3):471-4.

Steinmaus CM. (2016a). Perchlorate in Water Supplies: Sources, Exposures, and Health Effects. Curr Environ Health Rep. Jun;3(2):136-43.

Steinmaus C, Pearl M, Kharrazi M, Blount BC, Miller MD, Pearce EN, Valentin-Blasini L, DeLorenze G, Hoofnagle AN, Liaw J. (2016b). Thyroid Hormones and Moderate Exposure to Perchlorate during Pregnancy in Women in Southern California. Environ Health Perspect. Jun;124(6):861-7.

Sui L, Gilbert ME. (2003). Pre- and postnatal propylthiouracil-induced hypothyroidism impairs synaptic transmission and plasticity in area CA1 of the neonatal rat hippocampus. Endocrinology 144:4195-4203.

Tang JM, Li W, Xie YC, Guo HW, Cheng P, Chen HH, Zheng XQ, Jiang L, Cui D, Liu Y, Ding GX, Duan Y. (2013). Morphological and functional deterioration of the rat thyroid following chronic exposure to low-dose PCB118. Exp Toxicol Pathol. Nov;65(7-8):989-94.

Tonacchera M, Pinchera A, Dimida A, Ferrarini E, Agretti P, Vitti P, Santini F, Crump K, Gibbs J. (2004). Relative potencies and additivity of perchlorate, thiocyanate, nitrate, and iodide on the inhibition of radioactive iodide uptake by the human sodium iodide symporter. Thyroid, Dec;14(12):1012-9.

Van Herck SL, Geysens S, Delbaere J, Darras VM.  Regulators of thyroid hormone availability and action in embryonic chicken brain development. Gen Comp Endocrinol. 2013. 190:96-104.

Wu F, Zhou X, Zhang R, Pan M, Peng KL. (2012). The effects of ammonium perchlorate on thyroid homeostasis and thyroid-specific gene expression in rat. Environ Toxicol. Aug;27(8):445-52.

Wu Y, Beland FA1, Fang JL. (2016). Effect of triclosan, triclocarban, 2,2',4,4'-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicol In Vitro. Apr;32:310-9.

Zoeller, R. T., Tan, S. W., and Tyl, R. W. (2007). General background on the hypothalamic-pituitary-thyroid (HPT) axis. Critical reviews in toxicology 37(1-2), 11-53.