Stressor: 148



Polychlorinated biphenyl

Stressor Overview


AOPs Including This Stressor


Events Including This Stressor


Chemical Table


The Chemical Table lists chemicals associated with a stressor. This table contains information about the User’s term for a chemical, the DTXID, Preferred name, CAS number, JChem InChIKey, and Indigo InChIKey.


To add a chemical associated with a particular stressor, next to the Chemical Table click ‘Add chemical.’ This will redirect you to a page entitled “New Stressor Chemical.’ The dialog box can be used to search for chemical by name, CAS number, JChem InChIKey, and Indigo InChIKey. Searching by these fields will bring forward a drop down list of existing stressor chemicals formatted as “CAS- preferred name” “JChem InChIKey – preferred name” or “Indigo InChIKey- preferred name” depending on which field you perform the search. Select an entity from the drop down list and click ‘Add chemical.’ This will return you to the Stressor Page, where the new record should be in the ‘Chemical Table’ on the page.

AOP Evidence


Aryl hydrocarbon receptor activation leading to embryolethality via cardiotoxicty

There is no evidence text for this AOP

Interference with thyroid serum binding protein transthyretin and subsequent adverse human neurodevelopmental toxicity

A number of PCBs and metabolites have been found to bind to TTR (Lans et al 1993; Grimm et al 2013; Marchesini et al 2008) and have been frequently found to be associated with interference in thyroid signaling (Boas et al 2012; Gore et al 2015; Miller et al 2009; Murk et al 2013; Preau et al 2015).  Overall, the hydroxylated metabolites of PCBs competitively bind T4 more than the parent compounds (Weiss et al 2015). Depending on the congener and/or type of metabolite (i.e. hydroxylate, sulfate, etc.), there are multiple mechanisms by which this class of environmental contaminants can affect thyroid hormone levels in many tissues, including through interfering with TTR-T4 binding and transport of T4 into the brain (Morse et al 1996; Martin and Klaassen 2010; Martin et al 2012).  Multiple epidemiological studies in humans have reported associations between exposure to PCBs and/or metabolites and serum thyroid hormone concentrations (Dallaire et al 2009a, 2009b; Eguchi et al 2015), with hydroxylated metabolites demonstrating the greatest potential for TTR interference (Cheek et al 1999; Dirinck et al 2016).

Boas, M., Feldt-Rasmussen, U., & Main, K. M. (2012). Thyroid effects of endocrine disrupting chemicals. Molecular and Cellular Endocrinology, 355(2), 240–248. http://doi.org/10.1016/j.mce.2011.09.005

Cheek, A. O., Kow, K., Chen, J., & McLachlan, J. a. (1999). Potential mechanisms of thyroid disruption in humans: Interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Environmental Health Perspectives, 107(4), 273–278. http://doi.org/10.1289/ehp.99107273

Dallaire, R., Muckle, G., Dewailly, É., Jacobson, S. W., Jacobson, J. L., Sandanger, T. M., … Ayotte, P. (2009a). Thyroid hormone levels of pregnant inuit women and their infants exposed to environmental contaminants. Environmental Health Perspectives, 117(6), 1014–1020. http://doi.org/10.1289/ehp.0800219

Dallaire, R., Dewailly, É., Pereg, D., Dery, S., & Ayotte, P. (2009b). Thyroid function and plasma concentrations of polyhalogenated compounds in inuit adults. Environmental Health Perspectives, 117(9), 1380–1386. http://doi.org/10.1289/ehp.0900633

Dirinck E, Dirtu AC, Malarvannan G, Covaci A, Jorens PG, Van Gaal LF. A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans. Int J Environ Res Public Health. 2016 Apr 13;13(4):421. doi: 10.3390/ijerph13040421.

Eguchi, A., Nomiyama, K., Minh Tue, N., Trang, P. T. K., Hung Viet, P., Takahashi, S., & Tanabe, S. (2015). Residue profiles of organohalogen compounds in human serum from e-waste recycling sites in North Vietnam: Association with thyroid hormone levels. Environmental Research, 137, 440–449. http://doi.org/10.1016/j.envres.2015.01.007

Gore, a. C., Chappell, V. a., Fenton, S. E., Flaws, J. a., Nadal, a., Prins, G. S., … Zoeller, R. T. (2015). Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocrine Reviews, (October), er.2015-1093. http://doi.org/10.1210/er.2015-1093

Grimm, F. a., Lehmler, H. J., He, X., Robertson, L. W., & Duffel, M. W. (2013). Sulfated metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretin. Environmental Health Perspectives, 121(6), 657–662. http://doi.org/10.1289/ehp.1206198

Lans MC, Klasson-Wehler E, Willemsen M, Meussen E, Safe S Brouwer A. 1993. Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-p-dioxins and -dibenzofurans with human transthyretin. Chem Biol Interact 88(1):7–21.

Marchesini, G. R., Meimaridou, A., Haasnoot, W., Meulenberg, E., Albertus, F., Mizuguchi, M., … Murk, A. J. (2008). Biosensor discovery of thyroxine transport disrupting chemicals. Toxicology and Applied Pharmacology, 232(1), 150–160. http://doi.org/10.1016/j.taap.2008.06.014

Martin, L., & Klaassen, C. D. (2010). Differential effects of polychlorinated biphenyl congeners on serum thyroid hormone levels in rats. Toxicological Sciences : An Official Journal of the Society of Toxicology, 117(1), 36–44. http://doi.org/10.1093/toxsci/kfq187

Martin, L. A., Wilson, D. T., Reuhl, K. R., Gallo, M. A., & Klaassen, C. D. (2012). Polychlorinated biphenyl congeners that increase the glucuronidation and biliary excretion of thyroxine are distinct from the congeners that enhance the serum disappearance of thyroxine. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 40(3), 588–95. http://doi.org/10.1124/dmd.111.042796

Miller, M. D., Crofton, K. M., Rice, D. C., & Zoeller, R. T. (2009). Thyroid-disrupting compounds:  Interpreting upstream biomarkers of adverse outcomes. Environmental Health Perspectives, 117(7), 1033–1041. http://doi.org/10.1289/ehp.0800247

Morse DC, Seegal RF, Borsch KO, Brouwer A. Long-term alterations in regional brain serotonin metabolism following maternal polychlorinated biphenyl exposure in the rat. Neurotoxicology. 1996 Fall-Winter;17(3-4):631-8.

Murk, A. J., Rijntjes, E., Blaauboer, B. J., Clewell, R., Crofton, K. M., Dingemans, M. M. L., … Gutleb, A. C. (2013). Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicology in Vitro, 27(4), 1320–1346. http://doi.org/10.1016/j.tiv.2013.02.012

Préau, L., Fini, J. B., Morvan-Dubois, G., & Demeneix, B. (2014). Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1849(2), 112–121. http://doi.org/10.1016/j.bbagrm.2014.06.015

Weiss, J. M., Andersson, P. L., Zhang, J., Simon, E., Leonards, P. E. G., Hamers, T., & Lamoree, M. H. (2015). Tracing thyroid hormone-disrupting compounds: database compilation and structure-activity evaluation for an effect-directed analysis of sediment. Analytical and Bioanalytical Chemistry, 5625–5634. http://doi.org/10.1007/s00216-015-8736-9

Aryl hydrocarbon receptor activation leading to uroporphyria

Some polychlorinated biphenyls (namely non-ortho substituted congeners) cause porphyrin accumulation in mice (Hahn et al. 1988; Gorman et al. 2002) and chicken (Lorenzen et al 1997; Lorenzen and Kennedy 1995; Goldstein et al. 1976).

Hahn, M.E., Gasiewicz, T.A., Linko, P., Goldstein, J.A. (1988) The role of the Ah locus in hexachlorobenzene-induced porphyria: Studies in congenic C57BL/6J mice. Biochem. J. 254, 245-254.

Gorman, N., Ross, K. L., Walton, H. S., Bement, W. J., Szakacs, J. G., Gerhard, G. S., Dalton, T. P., Nebert, D. W., Eisenstein, R. S., Sinclair, J. F., and Sinclair, P. R. (2002) Uroporphyria in mice: thresholds for hepatic CYP1A2 and iron. Hepatology 35 (4), 912-921.

Lorenzen, A., Kennedy, S. W., Bastien, L. J., and Hahn, M. E. (1997) Halogenated aromatic hydrocarbon-mediated porphyrin accumulation and induction of cytochrome P4501A in chicken embryo hepatocytes. Biochemical Pharmacology 53 (3), 373-384.

Lorenzen, A., and Kennedy, S. W. (1995). Sensitivities of Chicken and Pheasant Embryos and Cultured Embryonic Hepatocytes to Cytochrome P4501A Induction and Porphyrin Accumulation by TCDD, TCDF and PCBs. Organohalogen Compounds 25, 65-68.

Goldstein, J. A., McKinney, J. D., Lucier, G. W., Hickman, P., Bergman, H., and Moore, J. A. (1976) Toxicological assessment of hexachlorobiphenyl isomers and 2,3,7,8,-tetrachlorodibenzofuran in chicks. II. Effects on drug metabolism and porphyrin accumulation. Toxicol. Appl. Pharmacol. 36 (1), 81-92.


Event Evidence


Activation, AhR

Non-ortho substituted PCBs are the most potent AHR agonists, whereas mono-ortho PCBs are less potent (Safe 1994; McFarland and Clark 1989).  Di-ortho substituted PCBs are the weakest AHR agonists and are unlikely to contribute to toxicity (Safe 1994).


Safe, S. (1994). Polychlorinated biphenyls (PCBs): Environmental impact, biochemical and toxic responses, and implications for risk assessment. Critical Reviews in Toxicology 24, 87-149.

McFarland, V. A., and Clarke, J. U. (1989). Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners: Considerations for a congener-specific analysis. Environ.Health Perspect81, 225-239.

Binding, Transthyretin in serum

There is no evidence text for this event.

Stressor Info


Chemical/Category Description



To edit the “ Stressor Description” section, on a KER page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing Stressor.”  Scroll down to the “Stressor Description” section, where a text entry box allows you to submit text. Click ‘Update’ to save your changes and return to the Stressor page.  The new text should appear under the “Stressor Description”  section on the page.

Characterization of Exposure



To edit the “Characterization of Exposure” section, on a Stressor page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing Stressor.”  Scroll down to the “Characterization of Exposure”  section, where a text entry box allows you to submit text. Click ‘Update’ to save your changes and return to the Stressor page.  The new text should appear under the “Characterization of Exposure” section on the page.



List the bibliographic references to original papers, books or other documents used to support the Stressor.


To edit the “References” section, on a Stressor page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing Stressor.”  Scroll down to the “References” section, where a text entry box allows you to submit text. Click ‘Update’ to save your changes and return to the Stressor page.  The new text should appear under the “References” section on the page.