Aop: 152

Title

Each AOP should be given a descriptive title that takes the form “MIE leading to AO”. For example, “Aromatase inhibition [MIE] leading to reproductive dysfunction [AO]” or “Thyroperoxidase inhibition [MIE] leading to decreased cognitive function [AO]”. In cases where the MIE is unknown or undefined, the earliest known KE in the chain (i.e., furthest upstream) should be used in lieu of the MIE and it should be made clear that the stated event is a KE and not the MIE. More help

Interference with thyroid serum binding protein transthyretin and subsequent adverse human neurodevelopmental toxicity

Short name
A short name should also be provided that succinctly summarises the information from the title. This name should not exceed 90 characters. More help
Transthyretin interference

Graphical Representation

A graphical summary of the AOP listing all the KEs in sequence, including the MIE (if known) and AO, and the pair-wise relationships (links or KERs) between those KEs should be provided. This is easily achieved using the standard box and arrow AOP diagram (see this page for example). The graphical summary is prepared and uploaded by the user (templates are available) and is often included as part of the proposal when AOP development projects are submitted to the OECD AOP Development Workplan. The graphical representation or AOP diagram provides a useful and concise overview of the KEs that are included in the AOP, and the sequence in which they are linked together. This can aid both the process of development, as well as review and use of the AOP (for more information please see page 19 of the Users' Handbook).If you already have a graphical representation of your AOP in electronic format, simple save it in a standard image format (e.g. jpeg, png) then click ‘Choose File’ under the “Graphical Representation” heading, which is part of the Summary of the AOP section, to select the file that you have just edited. Files must be in jpeg, jpg, gif, png, or bmp format. Click ‘Upload’ to upload the file. You should see the AOP page with the image displayed under the “Graphical Representation” heading. To remove a graphical representation file, click 'Remove' and then click 'OK.'  Your graphic should no longer be displayed on the AOP page. If you do not have a graphical representation of your AOP in electronic format, a template is available to assist you.  Under “Summary of the AOP”, under the “Graphical Representation” heading click on the link “Click to download template for graphical representation.” A Powerpoint template file should download via the default download mechanism for your browser. Click to open this file; it contains a Powerpoint template for an AOP diagram and instructions for editing and saving the diagram. Be sure to save the diagram as jpeg, jpg, gif, png, or bmp format. Once the diagram is edited to its final state, upload the image file as described above. More help

Authors

List the name and affiliation information of the individual(s)/organisation(s) that created/developed the AOP. In the context of the OECD AOP Development Workplan, this would typically be the individuals and organisation that submitted an AOP development proposal to the EAGMST. Significant contributors to the AOP should also be listed. A corresponding author with contact information may be provided here. This author does not need an account on the AOP-KB and can be distinct from the point of contact below. The list of authors will be included in any snapshot made from an AOP. More help

Erik R. Janus; M3 Technical & Regulatory Services; Shepherdstown, WV; <erik@mcubedservices.com>

Kristie Sullivan; Physicians Committee for Responsible Medicine; Washington, DC; <ksullivan@pcrm.org>

Katie Paul-Friedman; US Environmental Protection Agency; Research Triangle Park, NC

Mary Gilbert; National Health and Environmental Effects Research Laboratory; US Environmental Protection Agency; Research Triangle Park, NC; <gilbert.mary@epa.gov>

Kevin M. Crofton; National Center for Computational Toxicology; US Environmental Protection Agency; Research Triangle Park, NC; <crofton.kevin@epa.gov>

Anna van der Zalm; PETA Science Consortium International e.V, Germany; <AnnaZ@thepsci.eu>

Point of Contact

Indicate the point of contact for the AOP-KB entry itself. This person is responsible for managing the AOP entry in the AOP-KB and controls write access to the page by defining the contributors as described below. Clicking on the name will allow any wiki user to correspond with the point of contact via the email address associated with their user profile in the AOP-KB. This person can be the same as the corresponding author listed in the authors section but isn’t required to be. In cases where the individuals are different, the corresponding author would be the appropriate person to contact for scientific issues whereas the point of contact would be the appropriate person to contact about technical issues with the AOP-KB entry itself. Corresponding authors and the point of contact are encouraged to monitor comments on their AOPs and develop or coordinate responses as appropriate.  More help
Kristie Sullivan   (email point of contact)

Contributors

List user names of all  authors contributing to or revising pages in the AOP-KB that are linked to the AOP description. This information is mainly used to control write access to the AOP page and is controlled by the Point of Contact.  More help
  • Erik Janus
  • Timo Hamers
  • Kevin Crofton
  • Kristie Sullivan

Status

The status section is used to provide AOP-KB users with information concerning how actively the AOP page is being developed, what type of use or input the authors feel comfortable with given the current level of development, and whether it is part of the OECD AOP Development Workplan and has been reviewed and/or endorsed. “Author Status” is an author defined field that is designated by selecting one of several options from a drop-down menu (Table 3). The “Author Status” field should be changed by the point of contact, as appropriate, as AOP development proceeds. See page 22 of the User Handbook for definitions of selection options. More help
Author status OECD status OECD project SAAOP status
Under Development: Contributions and Comments Welcome Under Development 1.41 Included in OECD Work Plan
This AOP was last modified on April 16, 2021 15:43
The date the AOP was last modified is automatically tracked by the AOP-KB. The date modified field can be used to evaluate how actively the page is under development and how recently the version within the AOP-Wiki has been updated compared to any snapshots that were generated. More help

Revision dates for related pages

Page Revision Date/Time
Binding, Transthyretin in serum September 16, 2017 10:16
Displacement, Serum thyroxine (T4) from transthyretin December 17, 2016 17:03
Increased, Free serum thyroxine (T4) September 16, 2017 10:16
Increased, Uptake of thyroxine into tissue December 17, 2016 17:04
Increased, Clearance of thyroxine from serum January 26, 2021 10:41
Thyroxine (T4) in serum, Decreased November 14, 2020 02:14
Thyroxine (T4) in neuronal tissue, Decreased April 04, 2019 09:13
Hippocampal gene expression, Altered August 11, 2018 09:26
Hippocampal anatomy, Altered August 11, 2018 09:36
Hippocampal Physiology, Altered August 11, 2018 09:41
Cognitive Function, Decreased August 09, 2018 11:55
Binding, Transthyretin in serum leads to Displacement, Serum thyroxine (T4) from transthyretin December 09, 2020 14:51
Displacement, Serum thyroxine (T4) from transthyretin leads to Increased, Free serum thyroxine (T4) December 09, 2020 14:51
Increased, Free serum thyroxine (T4) leads to Increased, Clearance of thyroxine from serum January 26, 2021 10:51
Increased, Clearance of thyroxine from serum leads to T4 in serum, Decreased January 26, 2021 10:42
Halogenated phenols March 09, 2017 23:55
Polychlorinated biphenyl November 29, 2016 18:42
Polychlorinated dibenzodioxins March 09, 2017 20:38
Polybrominated diphenyl ethers March 09, 2017 20:40
Isoflavones March 09, 2017 21:14
Perflourinated chemicals March 09, 2017 22:36
Phthalates March 09, 2017 22:37
Tetrabromobisphenol A July 20, 2018 05:36
Clonixin March 10, 2017 00:50
Meclofenamic acid March 10, 2017 00:51
2,6-dinitro-p-cresol March 10, 2017 00:53
Triclopyr March 10, 2017 00:59
2,2',4,4'-Tetrahydroxybenzophenone November 29, 2016 18:42

Abstract

In the abstract section, authors should provide a concise and informative summation of the AOP under development that can stand-alone from the AOP page. Abstracts should typically be 200-400 words in length (similar to an abstract for a journal article). Suggested content for the abstract includes the following: The background/purpose for initiation of the AOP’s development (if there was a specific intent) A brief description of the MIE, AO, and/or major KEs that define the pathway A short summation of the overall WoE supporting the AOP and identification of major knowledge gaps (if any) If a brief statement about how the AOP may be applied (optional). The aim is to capture the highlights of the AOP and its potential scientific and regulatory relevance More help

This AOP describes adverse neurodevelopemental effects that may result from xenobiotic interference with thyroid serum binding protein transthyretin (TTR). Binding of TTR by a xenobiotic (the MIE) during certain developmental windows may disrupt the normal neurodevelopment of mammals through a transient increase in free thyroxine (T4) levels, permitting increased tissue uptake of thyroid hormone (TH), followed by a decrease in both serum and neuronal tissue concentrations. Due to the highly conserved nature of the TTR protein, birds, reptiles, fish and amphibians can also express TTR and be impacted by interference by xeniobiotics. The adverse consequences of TH insufficiency depend both on the severity and developmental timing, indicating that exposure to thyroid toxicants may produce different effects at different developmental windows of exposure. This AOP discusses the potential for developmental TTR interference to adversely impact hippocampal anatomy, function, gene expression and, ultimately, cognitive function.

Background (optional)

This optional subsection should be used to provide background information for AOP reviewers and users that is considered helpful in understanding the biology underlying the AOP and the motivation for its development. The background should NOT provide an overview of the AOP, its KEs or KERs, which are captured in more detail below. Examples of potential uses of the optional background section are listed on pages 24-25 of the User Handbook. More help

Transthyretin is one of three ancient, highly conserved serum binding proteins that collectively act to transport thyroid hormone (TH) and thus help maintain normal homeostasis via modulation of the hypothalamic/pituitary/thyroid axis. In addition to TTR, albumin (ALB) and thyroxine-binding globulin (TBG) also serve to transport TH in serum and the relative contribution of each binding protein differs across species. In man, TBG has the greatest affinity for thyroxine (T4), followed by TTR and ALB shows the lowest affinity for T4 while prevalence in serum is the opposite, while in rat, TTR is the major serum transport protein (as rats lack TBG). Interference with TH serum binding proteins is one of several mechanisms through which xenobiotics and environmental contaminants can disrupt normal thyroid endocrine function ("thyroid disruptors") and development of this AOP is expected to contribute towards a fuller understanding of the mechanism of TTR interference and how it may be measured in vitro as part of a larger screening battery for thyroid toxicants.

Summary of the AOP

This section is for information that describes the overall AOP. The information described in section 1 is entered on the upper portion of an AOP page within the AOP-Wiki. This is where some background information may be provided, the structure of the AOP is described, and the KEs and KERs are listed. More help

Events:

Molecular Initiating Events (MIE)
An MIE is a specialised KE that represents the beginning (point of interaction between a stressor and the biological system) of an AOP. More help
Key Events (KE)
This table summarises all of the KEs of the AOP. This table is populated in the AOP-Wiki as KEs are added to the AOP. Each table entry acts as a link to the individual KE description page.  More help
Adverse Outcomes (AO)
An AO is a specialised KE that represents the end (an adverse outcome of regulatory significance) of an AOP.  More help
Sequence Type Event ID Title Short name
1 MIE 957 Binding, Transthyretin in serum Binding, Transthyretin in serum
2 KE 958 Displacement, Serum thyroxine (T4) from transthyretin Displacement, Serum thyroxine (T4) from transthyretin
3 KE 959 Increased, Free serum thyroxine (T4) Increased, Free serum thyroxine (T4)
4 KE 960 Increased, Uptake of thyroxine into tissue Increased, Uptake of thyroxine into tissue
5 KE 961 Increased, Clearance of thyroxine from serum Increased, Clearance of thyroxine from serum
6 KE 281 Thyroxine (T4) in serum, Decreased T4 in serum, Decreased
7 KE 280 Thyroxine (T4) in neuronal tissue, Decreased T4 in neuronal tissue, Decreased
8 KE 756 Hippocampal gene expression, Altered Hippocampal gene expression, Altered
9 KE 757 Hippocampal anatomy, Altered Hippocampal anatomy, Altered
10 KE 758 Hippocampal Physiology, Altered Hippocampal Physiology, Altered
11 AO 402 Cognitive Function, Decreased Cognitive Function, Decreased

Relationships Between Two Key Events (Including MIEs and AOs)

This table summarises all of the KERs of the AOP and is populated in the AOP-Wiki as KERs are added to the AOP. Each table entry acts as a link to the individual KER description page.To add a key event relationship click on either Add relationship: events adjacent in sequence or Add relationship: events non-adjacent in sequence.For example, if the intended sequence of KEs for the AOP is [KE1 &gt; KE2 &gt; KE3 &gt; KE4]; relationships between KE1 and KE2; KE2 and KE3; and KE3 and KE4 would be defined using the add relationship: events adjacent in sequence button.  Relationships between KE1 and KE3; KE2 and KE4; or KE1 and KE4, for example, should be created using the add relationship: events non-adjacent button. This helps to both organize the table with regard to which KERs define the main sequence of KEs and those that provide additional supporting evidence and aids computational analysis of AOP networks, where non-adjacent KERs can result in artifacts (see Villeneuve et al. 2018; DOI: 10.1002/etc.4124).After clicking either option, the user will be brought to a new page entitled ‘Add Relationship to AOP.’ To create a new relationship, select an upstream event and a downstream event from the drop down menus. The KER will automatically be designated as either adjacent or non-adjacent depending on the button selected. The fields “Evidence” and “Quantitative understanding” can be selected from the drop-down options at the time of creation of the relationship, or can be added later. See the Users Handbook, page 52 (Assess Evidence Supporting All KERs for guiding questions, etc.).  Click ‘Create [adjacent/non-adjacent] relationship.’  The new relationship should be listed on the AOP page under the heading “Relationships Between Two Key Events (Including MIEs and AOs)”. To edit a key event relationship, click ‘Edit’ next to the name of the relationship you wish to edit. The user will be directed to an Editing Relationship page where they can edit the Evidence, and Quantitative Understanding fields using the drop down menus. Once finished editing, click ‘Update [adjacent/non-adjacent] relationship’ to update these fields and return to the AOP page.To remove a key event relationship to an AOP page, under Summary of the AOP, next to “Relationships Between Two Key Events (Including MIEs and AOs)” click ‘Remove’ The relationship should no longer be listed on the AOP page under the heading “Relationships Between Two Key Events (Including MIEs and AOs)”. More help

Network View

The stressor field is a structured data field that can be used to annotate an AOP with standardised terms identifying stressors known to trigger the MIE/AOP. Most often these are chemical names selected from established chemical ontologies. However, depending on the information available, this could also refer to chemical categories (i.e., groups of chemicals with defined structural features known to trigger the MIE). It can also include non-chemical stressors such as genetic or environmental factors. Although AOPs themselves are not chemical or stressor-specific, linking to stressor terms known to be relevant to different AOPs can aid users in searching for AOPs that may be relevant to a given stressor. More help

Stressors

The stressor field is a structured data field that can be used to annotate an AOP with standardised terms identifying stressors known to trigger the MIE/AOP. Most often these are chemical names selected from established chemical ontologies. However, depending on the information available, this could also refer to chemical categories (i.e., groups of chemicals with defined structural features known to trigger the MIE). It can also include non-chemical stressors such as genetic or environmental factors. Although AOPs themselves are not chemical or stressor-specific, linking to stressor terms known to be relevant to different AOPs can aid users in searching for AOPs that may be relevant to a given stressor. More help

Life Stage Applicability

Identify the life stage for which the KE is known to be applicable. More help
Life stage Evidence
Development Moderate

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) can be selected. In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
rat Rattus norvegicus High NCBI

Sex Applicability

The authors must select from one of the following: Male, female, mixed, asexual, third gender, hermaphrodite, or unspecific. More help
Sex Evidence
Mixed Moderate

Overall Assessment of the AOP

This section addresses the relevant biological domain of applicability (i.e., in terms of taxa, sex, life stage, etc.) and WoE for the overall AOP as a basis to consider appropriate regulatory application (e.g., priority setting, testing strategies or risk assessment). The goal of the overall assessment is to provide a high level synthesis and overview of the relative confidence in the AOP and where the significant gaps or weaknesses are (if they exist). Users or readers can drill down into the finer details captured in the KE and KER descriptions, and/or associated summary tables, as appropriate to their needs.Assessment of the AOP is organised into a number of steps. Guidance on pages 59-62 of the User Handbook is available to facilitate assignment of categories of high, moderate, or low confidence for each consideration. While it is not necessary to repeat lengthy text that appears elsewhere in the AOP description (or related KE and KER descriptions), a brief explanation or rationale for the selection of high, moderate, or low confidence should be made. More help

Domain of Applicability

The relevant biological domain(s) of applicability in terms of sex, life-stage, taxa, and other aspects of biological context are defined in this section. Biological domain of applicability is informed by the “Description” and “Biological Domain of Applicability” sections of each KE and KER description (see sections 2G and 3E for details). In essence the taxa/life-stage/sex applicability is defined based on the groups of organisms for which the measurements represented by the KEs can feasibly be measured and the functional and regulatory relationships represented by the KERs are operative.The relevant biological domain of applicability of the AOP as a whole will nearly always be defined based on the most narrowly restricted of its KEs and KERs. For example, if most of the KEs apply to either sex, but one is relevant to females only, the biological domain of applicability of the AOP as a whole would be limited to females. While much of the detail defining the domain of applicability may be found in the individual KE and KER descriptions, the rationale for defining the relevant biological domain of applicability of the overall AOP should be briefly summarised on the AOP page. More help

Essentiality of the Key Events

An important aspect of assessing an AOP is evaluating the essentiality of its KEs. The essentiality of KEs can only be assessed relative to the impact of manipulation of a given KE (e.g., experimentally blocking or exacerbating the event) on the downstream sequence of KEs defined for the AOP. Consequently evidence supporting essentiality is assembled on the AOP page, rather than on the independent KE pages that are meant to stand-alone as modular units without reference to other KEs in the sequence.The nature of experimental evidence that is relevant to assessing essentiality relates to the impact on downstream KEs and the AO if upstream KEs are prevented or modified. This includes: Direct evidence: directly measured experimental support that blocking or preventing a KE prevents or impacts downstream KEs in the pathway in the expected fashion. Indirect evidence: evidence that modulation or attenuation in the magnitude of impact on a specific KE (increased effect or decreased effect) is associated with corresponding changes (increases or decreases) in the magnitude or frequency of one or more downstream KEs.When assembling the support for essentiality of the KEs, authors should organise relevant data in a tabular format. The objective is to summarise briefly the nature and numbers of investigations in which the essentiality of KEs has been experimentally explored either directly or indirectly. See pages 50-51 in the User Handbook for further definitions and clarifications.  More help

Molecular Initiating Event Summary, Key Event Summary Provide an overall assessment of the essentiality for the key events in the AOP. Support calls for individual key events can be included in the molecular initiating event, key event, and adverse outcome tables above.

In vivo evidence for MIE

Kohrle et al (1989) added 10 μmol/L 3-methyl-4’,6-dihydroxy-3’,5-dibromo-flavone (EMD 21388) to pooled rat serum and measured displacement of [125I]-T4 from TTR. EMD21388 was synthesized using “molecular drug design” (and resembles T4) to help confirm previous findings that certain flavonoid deiodinase inhibitors also displaced thyroxine (T4) for TTR (or T3-binding prealbumin). Displacement of [125I] from TTR in rat serum was analyzed by gel electrophoresis (PAGE) and individual serum samples were assayed for T3 and T4 content by RIA and % free TH by equilibrium dialysis (lower limit of detectability 0.3 ug/dL for T4). There was a significant increase in % free T4 (0.031 to 0.124), which was dose-dependent and resulted in complete inhibition of [125I]-T4/TTR at 8-10 umol (radiolabeled TH were displaced primarily to albumin).

insert Fig 2 from Kohrle et al 1989

One to 4 hours following ip delivery of 2 μmol/100 g BW to euthyroid Sprague-Dawley rats (a dose that is 1000x higher than daily T4 production in rat), inhibition of [125I]-T4/TTR binding was observed. T4 decreased from 5.6 to 2.3 ug/dl after 1 hour and remained low while % free T4 increased from 0.035 to 0.091 and remained high; however, free T4 did not change. TSH decreased to very low values after 2 hours and increased slightly, despite no change in the free TH concentration (hypothyroid rats did not show changes in serum TSH following EMD 21388 administration). Lueprasitsakul et al (1990) performed a series of experiments with Sprague-Dawley rats using smaller doses of EMD 21388 (up to 2 μmol /100 g BW) and the same measurement methods (RIA, equilibrium dialysis). Administration of 2 μmol of EMD 21388 inhibited [125I]-T4/TTR binding within a few minutes, displacing [125I] to albumin to a greater degree of magnitude, due to slight differences in preparing the EMD 21388 solutions. Dose-dependent decreases in displacement were found with decreasing dose.

insert Figure 1 & Figure 2

Following a single dose of 2 μmol, a significant decrease was seen in total serum T4 after 10 minutes that persisted, % free T4 also increased immediately (peaked after 10 minutes) and stayed elevated and a significant increase in free T4 was observed within three minutes that stayed elevated for 60 minutes. Following a single dose of 0.3 μmol, decreased [125I]-T4/TTR binding was observed reaching a nadir after 10 minutes and slowly recovering over the 180-minute experiment. The % free T4 and serum free T4 both increased and returned to normal after 180 minutes as well while total serum T4 hit a nadir after 10 minutes and mostly recovered. Serum TSH decreased after 20 minutes, significantly at the nadir hit after 60 minutes.

Evidence Assessment

The biological plausibility, empirical support, and quantitative understanding from each KER in an AOP are assessed together.  Biological plausibility of each of the KERs in the AOP is the most influential consideration in assessing WoE or degree of confidence in an overall hypothesised AOP for potential regulatory application (Meek et al., 2014; 2014a). Empirical support entails consideration of experimental data in terms of the associations between KEs – namely dose-response concordance and temporal relationships between and across multiple KEs. It is examined most often in studies of dose-response/incidence and temporal relationships for stressors that impact the pathway. While less influential than biological plausibility of the KERs and essentiality of the KEs, empirical support can increase confidence in the relationships included in an AOP. For clarification on how to rate the given empirical support for a KER, as well as examples, see pages 53- 55 of the User Handbook.  More help

Quantitative Understanding

Some proof of concept examples to address the WoE considerations for AOPs quantitatively have recently been developed, based on the rank ordering of the relevant Bradford Hill considerations (i.e., biological plausibility, essentiality and empirical support) (Becker et al., 2017; Becker et al, 2015; Collier et al., 2016). Suggested quantitation of the various elements is expert derived, without collective consideration currently of appropriate reporting templates or formal expert engagement. Though not essential, developers may wish to assign comparative quantitative values to the extent of the supporting data based on the three critical Bradford Hill considerations for AOPs, as a basis to contribute to collective experience.Specific attention is also given to how precisely and accurately one can potentially predict an impact on KEdownstream based on some measurement of KEupstream. This is captured in the form of quantitative understanding calls for each KER. See pages 55-56 of the User Handbook for a review of quantitative understanding for KER's. More help

Considerations for Potential Applications of the AOP (optional)

At their discretion, the developer may include in this section discussion of the potential applications of an AOP to support regulatory decision-making. This may include, for example, possible utility for test guideline development or refinement, development of integrated testing and assessment approaches, development of (Q)SARs / or chemical profilers to facilitate the grouping of chemicals for subsequent read-across, screening level hazard assessments or even risk assessment. While it is challenging to foresee all potential regulatory application of AOPs and any application will ultimately lie within the purview of regulatory agencies, potential applications may be apparent as the AOP is being developed, particularly if it was initiated with a particular application in mind. This optional section is intended to provide the developer with an opportunity to suggest potential regulatory applications and describe his or her rationale.To edit the “Considerations for Potential Applications of the AOP” section, on an AOP page, in the upper right hand menu, click ‘Edit.’ This brings you to a page entitled, “Editing AOP.” Scroll down to the “Considerations for Potential Applications of the AOP” section, where a text entry box allows you to submit text. In the upper right hand menu, click ‘Update AOP’ to save your changes and return to the AOP page or 'Update and continue' to continue editing AOP text sections.  The new text should appear under the “Considerations for Potential Applications of the AOP” section on the AOP page. More help

References

List the bibliographic references to original papers, books or other documents used to support the AOP. More help

Abdalla, S.M. and A.C. Bianco. (2014) Defending plasma T3 is a biological priority.  Clin. Endocrinol. (Oxf)  81(5): 633-641.

Alshehri, B., D’Souza, D. G., Lee, J. Y., Petratos, S., & Richardson, S. J. (2015). The Diversity of Mechanisms Influenced by Transthyretin in Neurobiology: Development, Disease and Endocrine Disruption. Journal of Neuroendocrinology, 27(5), 303–323. http://doi.org/10.1111/jne.12271

Andrea, T.A., R.R. Cavalieri, I.D. Goldfine and E.C. Jorgensen (1980) Binding of thyroid hormones and analogues to the human plasma protein prealbumin. Biochemistry  19(1): 55-63.

Aqai, P., C. Fryganas, M. Mizuguchi, W. Haasnoot and M.W. Nielen. (2012) Triple bioaffinity mass spectrometry concept for thyroid transporter ligands.  Anal. Chem.  84(15): 6488-6493.

Athanasiadou, M., S.N. Cuadra, G. Marsh, A> Bergman, and K. Jakobsson. (2008) Polybrominated diphenyl ethers (PBDEs) and bioaccumulative hydroxylated PBDE metabolites in young humans from Managua, Nicaragua.  Environ. Health Perspect. 116(3): 400-408.

Barter, R.A. and C.D. Klaassen. (1994) Reduction of thyroid hormone levels and alteration of thyroid function by four representative UDP-glucuronosyltransferase inducers in rats.  Toxicol. Appl. Pharmacol.  128(1): 9-17.

Blake, C.C., J.M. Burridge and S.J. Oatley. (1978) X-ray analysis of thyroid hormone binding to prealbumin. Biochem Soc. Trans. 6(6): 1114-1118.

Bloom, M.S., J.E. Vena, J.R. Olson and P.J. Kostyniak.  (2009)  Assessment of polychlorinated biphenyl congeners, thyroid stimulating hormone, and free thyroxine among New York state anglers.  Int. J. Hyg. Environ. Health  212(6): 599-611.

Branchi, I., E. Alleva and L.G. Costa.  (2002)  Effects of perinatal exposure to a polybrominated diphenyl ether (PBDE 99) on mouse neurobehavioural development.  Neurotoxicology  23(3): 375-384.

Brouwer, a, & van den Berg, K. J. (1986). Binding of a metabolite of 3,4,3’,4'-tetrachlorobiphenyl to transthyretin reduces serum vitamin A transport by inhibiting the formation of the protein complex carrying both retinol and thyroxin. Toxicology and Applied Pharmacology, 85(3), 301–312.

Calvo, R.M., E. Jauniaux, B. Gulbis, M. Asuncion, C. Gervy, B. Contempre and G. Morreale de Escobar.  (2002)  Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development.  J. Clin. Endocrinol. Metab.  87(4); 1768-1777.

Cao, J., L.H. Guo, B. Wan and Y. Wei. (2011) In vitro fluorescence displacement investigation of thyroxine transport disruption by bisphenol A.  J. Environ Sci, (China)  23(2): 315-321.

Cao, J., Y. Lin, L.H. Guo, A.Q. Zhang, Y. Wei and Y. Yang. (2010) Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins.  Toxicology  277(1-3): 20-28.

Chan, S.Y., J.A. Franklyn, H.N. Pemberton, J.N. Bulmer, T.J. Visser, C.J. McCabe and M.D. Kilby.  (2006)  Monocarboxylate transporter 8 expression in the human placenta: the effects of severe intrauterine growth restriction.  J. Endocrinol.  189(3): 465-471.

Chan, S., S. Kachilele, C.J. McCabe, L.A. Tannahill, K. Boelaert, N.J. Gittoes, T.J. Visser, J.A. Franklyn and M.D. Kilby.  (2002)  Early expression of thyroid hormone deiodinases and receptors in human fetal cerebral cortex.  Brain Res. Dev. Brain Res.  138(2): 109-116.

Chang, S.C., J.R. Thibodeaux, M.L. Eastvold, D.J. Ehresman, J.A. Bjork, J.W. Froehlich, C. Lau, R.J. Singh, K.B. Wallace and J.L. Butenhoff. (2008) Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS).  Toxicology  243(3): 330-339.

Chanoine, J.-P., Alex, S., Fang, S. L., Stone, S., Leonard, J. L., Kohrle, J., & Braverman, L. E. (1992). Role of transthyretin in the transport of thyroxine from the blood to the choroid plexus, the cerebrospinal fluid and the brain. Endocrinology, 130(2), 933–938.

Chauhan, K. R., Kodavanti, P. R. S., & McKinney, J. D. (2000). Assessing the Role of ortho-Substitution on Polychlorinated Biphenyl Binding to Transthyretin, a Thyroxine Transport Protein. Toxicology and Applied Pharmacology, 162(1), 10–21. http://doi.org/10.1006/taap.1999.8826

Cheek, A.O., K. Kow, J. Chen and J.A. McLachlan. (1999) Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin.  Environ. Health Perspect.  107(4): 273-278.

Chevrier, J., K.G. Harley, A. Bradman, M. Gharbi, A. Sjodin and B. Eskenazi.  (2010)  Polybrominated diphenyl ether (PBDE) flame retardants and thyroid hormone during pregnancy.  Environ. Health Perspect.  118(10) : 1444-1449.

Chopra, I.J., P. Taing and L. Mikus. (1996) Direct determination of free triiodothyronine (T3) in undiluted serum by equilibrium dialysis/radioimmunoassay (RIA).  Thyroid  6(4): 255-259.

Costa, L.G., R. de Laat, S. Tagliaferri and C. Pellacani.  (2014)  A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity.  230(2): 282-294.

Dallaire, R., G. Muckle, E. Dewailly, S.W. Jacobson, J.L. Jacobson, T.M. Sandanger, C.D. Sandau and P. Ayotte. (2009a)  Thyroid hormone levels of pregnant inuit women and their infants exposed to environmental contaminants.  Environ. Health Perspect.  117(6): 1014-1020.

Dallaire, R., E. Dewailly, D. Pereg, S. Dery and P. Ayotte.  (2009b)  Thyroid function and plasma concentrations of polyhalogenated compounds in Inuit adults.  Environ. Health Perspect.  117(9): 1380-1386.

Darnerud, P.O., D. Morse, E. Klasson-Wehler and A Brouwer.  (1996)  Binding of a 3,3', 4,4'-tetrachlorobiphenyl (CB-77) metabolite to fetal transthyretin and effects on fetal thyroid hormone levels in mice.  Toxicology  106(1-3): 105-114.

De Escobar, G.M., M.J. Obregon and F.E. del Rey.  (2004)  Maternal thyroid hormones early in pregnancy and fetal brain development.  Best Pract. Res. Clin. Endocrinol. Metab.  18(2): 225-248.

Dirinck, E., A.C. Dirtu, G. Malarvanna, A. Covaci, P.G. Jorens and L.F. Van Gall. (2016) A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans.  Int. J. Environ. Res. Public Health  13(4): 421.

Eguchi, A., K. Nomiyama, N. Minh Tue, P.T. Trang, P. Hung Viet, S. Takahashi and S. Tanabe.  (2015)  Residue profiles of organohalogen compounds in human serum from e-waste recycling sites in North Vietnam: Association with thyroid hormone levels.  Environ. Res.  137: 440-449.

Emerson, C.H., J.H. Cohen III, R.A Yung, S. Alex and S.L. Fang. (1990) Gender-related differences of serum thyroxine-binding proteins in the rat. Acta Endocrinol. (Copenh)  123(1): 72-78.

Erratico, C.A., A. Steitz and S.M. Bandiera. (2013) Biotransformation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by human liver microsomes: identification of cytochrome P450 2B6 as the major enzyme involved.  Chem. Res. Toxicol.  26(5): 721-731.

Erratico, C.A., S.C. Moffatt and S.M. Bandiera. (2011) Comparative oxidative metabolism of BDE-47 and BDE-99 by rat hepatic microsomes.  Toxicol. Sci.  123(1): 37-47.

Eskenazi, B., J. Chevrier, S.A. Rauch, K. Kogul, K.G. Harley, C. Johnson, C. Trujillo, A. Sjodin and A. Bradman.  (2013)  In utero and childhood polybrominated diphenyl ether (PBDE) exposures and neurodevelopment in the CHAMACOS study.  121(2) : 257-262.

Feo, M.L., M.S. Gross, B.P. McGarrigle, E. Eljarrat, D. Barcelo, D.S. Aga and J.R. Olson. (2013) Biotransformation of BDE-47 to potentially toxic metabolites is predominantly mediated by human CYP2B6.  Environ. Health Persepct.  121(4): 440-446.

Ferguson, R.N., H. Edelhoch, H.A. Saroff, J. Robbins and H.J. Cahnmann (1975) Negative cooperativity in the binding of thyroxine to human serum prealbumin. Preparation of tritium-labeled 8-anilino-1-naphthalenesulfonic acid.  Biochemistry  14(2): 282-289.

Friesema EC, Jansen J, Jachtenberg JW, Visser WE, Kester MH, Visser TJ 2008 Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Molecular endocrinology (Baltimore, Md 22:1357-1369

Friesema EC, Kuiper GG, Jansen J, Visser TJ, Kester MH 2006 Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate-limiting role in intracellular metabolism. Molecular endocrinology (Baltimore, Md 20:2761-2772

Friesma, E.C., J. Jansen and T.J. Visser. (2005) Thyroid hormone transporters.  Biochem. Soc. Trans.  33(part 1): 228-232.

Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ 2003 Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278:40128-40135

Grimm, F. a., Lehmler, H. J., He, X., Robertson, L. W., & Duffel, M. W. (2013). Sulfated metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretin. Environmental Health Perspectives, 121(6), 657–662.

Gutshall, D.M., G.D. Pilcher and A.E. Langley. (1989) Mechanism of the serum thyroid hormone lowering effect of perfluoro-n-decanoic acid (PFDA) in rats. J. Toxicol. Environ. Health   28(1): 53-65.

Hagenbuch, B. (2007)  Cellular entry of thyroid hormones by organic anion transporting polypeptides.  Best Pract. Res. Clin. Endocrinol. Metab.  21(2): 209-221.

Hagenbuch B, Meier PJ 2004 Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch 447:653-665

Hagmar, L., L. Rylander, E. Dyremark, E. Klasson-Wehler and E.M. Erfurth. (2001a).  Plasma concentrations of persistent organochlorines in relation to thyrotropin and thyroid hormone levels in women.  Int. Arch. Occup. Environ. Health  74(3): 184-188.

Hagmar, L., J. Bjork, A. Sjodin, A. Bergman and E.M. Erfurth. (2001b) Plasma levels of persistent organohalogens and hormone levels in adult male humans.  Arch. Environ. Health  56(2): 138-143.

Hallgren, S., T. Sinjari, H. Hakansson and P.O. Darnerud. (2001) Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice.  75(4): 200-208.

Hallgren, S. and P.O. Darnerud. (2002) Polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and chlorinated paraffins (CPs) in rats-testing interactions and mechanisms for thyroid hormone effects.  Toxicology  177(203): 227-243.

Hamers, T., J.H. Kamstra, E. Sonneveld, A.J. Murk, M.H. Kester, P.L. Andersson, J. Legler and A. Brouwer. (2006) In vitro profiling of the endocrine-disrupting potency of brominated flame retardants.  Toxicol. Sci.  92(1): 157-173.

Hamers, T., Kamstra, E. Sonneveld, A.J. Murk, T.J. Visser, M.J. Van Velzen, A. Brouwer and A. Bergman. (2008) Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47).  Mol. Nutr. Food Res.  52(2): 284-298.

Harley, K.G., A.R. Marks, J. Chevrier, A. Bradman, A. Sjodin and B. Eskenazi.  (2010)  PBDE concentrations in women's serum and fecundability.  Environ. Health Perspect.  118(5): 699-704.

Henneman, G., R. Docter, E.C. Friesma, M. de Jong, E.P. Krenning and T.J. Visser.  (2001)  Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability.  Endocr. Rev.  22(4): 451-476.

Heuer, H.  (2007)  The importance of thyroid hormone transporters for brain development and function.  Best Pract. Res. Clin. Endocrinol. Metab.  21(2):  265-276.

Hood, A. and C.D. Klaassen. (2000a) Differential effects of microsomal enzyme inducers on in vitro thyroxine (T(4)) and triiodothyronine (T(3)) glucuronidation.  Toxicol. Sci.  55(1): 78-84.

Hood, A. and C.D. Klaassen.  (2000b)  Effects of microsomal enzyme inducers on outer-ring deiodinase activity toward thyroid hormones in various rat tissues.  Toxicol. Appl. Pharmacol.  163(3): 240-248.

Hovander, L., M. Athanasiadou, L. Asplund, S. Jensen and E.K. Wehler. (2000). Extraction and cleanup methods for analysis of phenolic and neutral organohalogens in plasma.  24(8): 696-703.

Hume, R., J. Simpson, C. Delahunty, H. van Toor, S.Y. Wu, F.L. Williams, T.J. Visser et al.  (2004) Human fetal and cord serum thyroid hormones: developmental trends and interrelationships.  J. Clin. Endocrinol. Metab.  89(8): 4097-4103.

Inoue, K., F. Okada, R. Ito, S. Kato, S. Sasaki, S. Nakajima, A. Uno, Y. Saijo, F. Sata, Y. Yoshimura, R. Kishi and H. Nakazawa. (2004) Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy.  Environ. Health Perspect.  112(11): 1204-1207.

Kato, Y., K. Haraguchi, M. Onishi, S. Ikushiro, T. Endo, C. Ohta, N. Koga, S Yamada and M. Degawa. (2014) 3,3',4,4'-Tetrachlorobiphenyl-mediated decrease of serum thyroxine level in C57BL/6 and DBA/2 mice occurs mainly through enhanced accumulation of thyroxine in the liver.  Biol. Pharm. Bull.  37(3) 504-509.

Kato, Y., M. Onishi, K. Haraguchi, S. Ikushiro, C. Ohta, N. Koga, T. Endo, S. Yamada and M. Degawa. (2013) A possible mechanism for 2,3',4,4',5'-pentachlorobiphenyl-mediated decrease in serum thyroxine level in mice.  Biol. Pharm. Bull.  36(10): 1594-1601.

Kato, Y., S. Tamaki, K. Haraguchi, S. Ikushiro, M. Sekimoto, C. Ohta, T. Endo, N. Koga, S. Yamada and M. Degawa. (2012) Comparative study on 2,2',4,5,5'-pentachlorobiphenyl-mediated decrease in serum thyroxine level between C57BL/6 and its transthyretin-deficient mice.  Toxicol. Appl. Pharmacol.  263(3): 323-329.

Kato, Y., M. Onishi, K. Haraguchi, S. Ikushiro, C. Ohta, N. Koga, T. Endo, S. Yamada and M. Degawa. (2011) A possible mechanism for 2,2',4,4',5,5'-hexachlorobiphenyl-mediated decrease in serum thyroxine level in mice.  Toxicol. Appl. Pharmacol.  254(1): 48-55.

Kato, Y., K. Haraguchi, M. Kubota, Y. Seto, S. Ikushiro, T. Sakaki, N. Koga, S. Yamada and M. Degawa. (2009) 4-Hydroxy-2,2',3,4',5,5',6-heptachlorobiphenyl-mediated decrease in serum thyroxine level in mice occurs through increase in accumulation of thyroxine in the liver.  Drug Metab. Dispos.  37(10): 2095-2102.

Kato, Y., S. Ikushiro, R. Takiguchi, K. Haraguchi, N. Koga, S. Uchida, T. Sakaki, S. Yamada, J. Kanno and M. Degawa. (2007) A novel mechanism for polychlorinated biphenyl-induced decrease in serum thyroxine level in rats.  Drug Metab. Dispos. 35(10) : 1949-1955.

Kato, Y., S. Ikushiro, K. Haraguchi, T. Yamazaki, Y. Ito, H. Suzuki, R. Kimura, S. Yamada, T. Inoue and M. Degawa. (2004) A possible mechanism for decrease in serum thyroxine level by polychlorinated biphenyls in Wistar and Gunn rats.  Toxicol. Sci.  81(2): 309-315.

Kato, Y., K. Haraguchi, T. Yamazuki, Y. Ito, S. Miyajima, K. Nemoto, N. Koga, R. Kimura and M. Degawa. (2003) Effects of polychlorinated biphenyls, kanechlor-500, on serum thyroid hormone levels in rats and mice.  Toxicol. Sci.  72(2): 235-241.

Kim, S.Y., E.S. Choi, H.J. Lee, C. Moon and E. Kim.  (2015)  Transthyretin as a new transporter of nanoparticles for receptor-mediated transcytosis in rat brain microvessels.  Colloids Surf B Biointerfaces  136: 989-996.

Kim do K, Kanai Y, Matsuo H, Kim JY, Chairoungdua A, Kobayashi Y, Enomoto A, Cha SH, Goya T, Endou H 2002 The human T-type amino acid transporter-1: characterization, gene organization, and chromosomal location. Genomics 79:95-103

Kohrle, J., S.L. Fang, Y. Yang, K. Irmscher, R.D. Hesch, S. Pino, S. Alex, and L.E. Braverman. (1989). Rapid effects of the flavonoid EMD 21388 on serum thyroid hormone binding and thyrotropin regulation in the rat. Endocrinoloy 125: 532-537

Koopman-Essenboom, C., D.C. Morse, N. Weisglas-Kuperus, I.J. Lutkeschipholt, C.G. Van der Paauw, L.G. Tuinstra, A. Brouwer and P.J. Sauer.  (1994)  Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and their infants.  Pediatr. Res.  36(4): 468-473.

Lans, M. C., Klasson-Wehler, E., Willemsen, M., Meussen, E., Safe, S., & Brouwer, A. (1993). STRUCTURE-DEPENDENT, COMPETITIVE INTERACTION OF HYDROXY-POLYCHLOROBIPHENYLS, -DIBENZO-p-DIOXINS AND -DIBENZOFURANS WITH HUMAN TRANSTHYRETIN. Chemico-Biological Interactions, 88, 7–21.

Lans, M. C., Spiertz, C., Brouwer, a, & Koeman, J. H. (1994). Different competition of thyroxine binding to transthyretin and thyroxine-binding globulin by hydroxy-PCBs, PCDDs and PCDFs. European Journal of Pharmacology, 270(2-3), 129–136. http://doi.org/10.1016/0926-6917(94)90054-X

Larsson, M., Pettersson, T., & Carlström, a. (1985). Thyroid hormone binding in serum of 15 vertebrate species: isolation of thyroxine-binding globulin and prealbumin analogs. General and Comparative Endocrinology, 58(3), 360–375.

Loubiere, L.S., E. Vasilopoulou, J.N. Bulmer, P.M. Taylor, B. Stieger, F. Verrey, C.J. McCabe, J.A. Franklyn, M.D. Kilby and S.Y. Chan. (2010)  Expression of thyroid hormone transporters in the human placenta and changes associated with intrauterine growth restriction.  Placenta  31(4): 295-304.

Lueprasitsakul, W., Alex, S., Fang, S. L., Pino, S., Irmscher, K., Köhrle, J., & Braverman, L. E. (1990). Flavonoid administration immediately displaces thyroxine (T4) from serum transthyretin, increases serum free T4, and decreases serum thyrotropin in the rat. Endocrinology 126 (6)

Lupton, S.J., P. McGarrigle, J.R. Olson, T.D. Wood and D.S. Aga. (2010) Analysis of hydroxylated polybrominated diphenyl ether metabolites by liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry.  Rapid Commun. Mass. Spectrom.  24(15): 2227-2235.

Lupton, S.J., B.P. McGarrigle, J.R. Olson, T.D. Wood and D.S. Aga. (2009)  Analysis of hydroxylated polybrominated diphenyl ether metabolites by liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry.  22(11): 1802-1809.

Malmberg, T., M. Athanasiadou, G. Marsh, I. Brandt and A. Bergman.  (2005) Identification of hydroxylated polybrominated diphenyl ether metabolites in blood plasma from polybrominated diphenyl ether exposed rats.  39(14): 5342-5348.

Marchesini, G.R., E. Meulenberg, W. Haasnoot, M. Mizuguchi and H. Irth.  (2006) Biosensor recognition of thyroid-disrupting chemicals using transport proteins.  Anal. Chem.  78(4): 1107-1114.

Marchesini, G.R., A. Meimaridou, W. Haasnoot, E. Meulenberg, F. Albertus, M. Mizuguchi, M. Takeuchi, H. Irth and A.J. Murk. (2008) iosensor discovery of thyroxine transport disrupting chemicals.  Toxicol. Appl. Pharmacol.  232(1): 150-160.

Martin, L.A., D.T. Wilson, K.R> Reuhl, M.A. Gallo and C.D. Klaassen. (2012) Polychlorinated biphenyl congeners that increase the glucuronidation and biliary excretion of thyroxine are distinct from the congeners that enhance the serum disappearance of thyroxine.  Drug Metab. Dispos.  40(3): 588-595.

Martin, L. and C.D. Klaassen. (2010) Differential effects of polychlorinated biphenyl congeners on serum thyroid hormone levels in rats.  Toxicol. Sci.  117(1): 36-44.

Meerts, I.A., Y. Assink, P.H. Cenjin, J.H. Van Den Berg, B.M. Weijers, A. Bergman, J.H. Koeman and A. Brouwer. (2002) Placental transfer of a hydroxylated polychlorinated biphenyl and effects on fetal and maternal thyroid hormone homeostasis in the rat.  Toxicol. Sci. 68(2): 361-371.

Meerts, I.A., J.J. van Zanden, E.A. Lujiks, I. van Leeuwen-Bol, G. Marsh, E. Jakobsson, A. Bergman and A. Brouwer. (2000) Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro.  Toxicol. Sci.  56(1): 95-104.

Mendel, C. M. (1989). Modeling thyroxine transport to liver : rejection of the “enhanced dissociation” hypothesis as applied to thyroxine. Am J Physiol, 257(Endocrinol Metab 20), E764–E771.

Mendel, C. M., Cavalieri, R. R., & Kohrle, J. (1992). Thyroxine (T4) transport and distribution in rats treated with EMD 21388, a synthetic flavonoid that displaces T4 from transthyretin. Endocrinology, 130(3), 1525–1532.

Midgley, J. E. (2001) Direct and indirect free thyroxine assay methods: theory and practice.  Clin. Chem.  47(8): 1353-1363.

Miksys, S. and R.F. Tyndale. (2004) The unique regulation of brain cytochrome P450 2 (CYP2) family enzymes by drugs and genetics.  Drug Metab. Rev.  36(2): 313-333.

Montano, M., E. Coccco, C. Guignard, G. Marsh, L. Hoffmann, A. Bergman, A.C. Gutleb and A.J. Murk. (2012) New approaches to assess the transthyretin binding capacity of bioactivated thyroid hormone disruptors.  Toxicol. Sci.  130(1): 94-105.

Morse, D.C., E.K. Wehler, W. Wesseling, J.H. Koeman and A. Brouwer.  (1996)  Alterations in rat brain thyroid hormone status following pre- and postnatal exposure to polychlorinated biphenyls (Aroclor 1254).  Toxicol. Appl. Pharmacol.  136(2): 269-279.

Morse, D.C., D. Groen, M. Veerman, C.J. van Amerongen, H.B. Koeter, A.E. Smits van Proojie, T.J. Visser, J.H. Koeman and A. Brouwer.  (1993)  Interference of polychlorinated biphenyls in hepatic and brain thyroid hormone metabolism in fetal and neonatal rats.  Toxicol. Appl. Pharmacol.  122(1) :27-33.

Munro, S.L., C.F. Lim, J.G. Hall, J.W. Barlow, D.J. Craik, D.J. Topliss and J.R. Stockigt (1989) Drug competition for thyroxine binding to transthyretin (prealbumin): comparison with effects on thyroxine-binding globulin. J. Clin. Endocrinol. Metab.  68(6): 1141-1147,

Nishimura M, Naito S 2008 Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab Pharmacokinet 23:22-44

Pedraza, P., Calvo, R., Obregón, M. J., Asuncion, M., Escobar Del Rey, F., & Morreale De Escobar, G. (1996). Displacement of T4 from transthyretin by the synthetic flavonoid EMD 21388 results in increased production of T3 from T4 in rat dams and fetuses. Endocrinology, 137(11), 4902–4914. http://doi.org/10.1210/en.137.11.4902

Purkey, H.E., M.I. Dorrell and J.W. Kelly. (2001) Evaluating the binding selectivity of transthyretin amyloid fibril inhibitors in blood plasma.  Proc. Natl. Acad. Sci. USA  98(10): 5566-5571.

Refetoff, S., N.I. Robin and V.S. Fang. (1970) Parameters of thyroid function in serum of 16 selected vertebrate species: a study of PBI, serum T4, free T4, and the pattern of T4 and T3 binding to serum proteins.  Endocrinology  86(4): 793-805.

Refetoff, S. (2015) Thyroid Hormone Serum Transport Proteins. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000.

Ren, X.M., L.H. Guo, Y. Gao, B.T. Zhang and B. Wan. (2013) Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination.  Toxicol. Appl. Pharamacol.  268(3): 256-263.

Ren, X. M., & Guo, L. H. (2012). Assessment of the binding of hydroxylated polybrominated diphenyl ethers to thyroid hormone transport proteins using a site-specific fluorescence probe. Environmental Science and Technology, 46(8), 4633–4640. http://doi.org/10.1021/es2046074

Rerat, C. and H.G. Schwick (1967) [Crystallographic data of blood plasma prealbumin]. [Article in French] Acta Crystallogr.  22(3): 441-442.

Richardson, S. J. (2007). Cell and molecular biology of transthyretin and thyroid hormones. International Review of Cytology, 258(January), 137–93. http://doi.org/10.1016/S0074-7696(07)58003-4

Richardson, S. J., Wijayagunaratne, R. C., D’Souza, D. G., Darras, V. M., & Van Herck, S. L. J. (2015). Transport of thyroid hormones via the choroid plexus into the brain: the roles of transthyretin and thyroid hormone transmembrane transporters. Frontiers in Neuroscience, 9(March), 1–8.

Rickenbacher, U., McKinney, J. D., Oatley, S. J., & Blake, C. C. (1986). Structurally specific binding of halogenated biphenyls to thyroxine transport protein. Journal of Medicinal Chemistry, 29(5), 641–648.

Ritchie, J.W. and P.M. Taylor.  (2001)  Role of the System L permease LAT1 in amino acid and iodothyronine transport in placenta.  Biochem. J.  356(Part 3); 719-725.

Riu, A., J.P. Cravedi, L. Debrauwer, A. Garcia, C. Canlet, I. Jouanin and D. Zalko. (2008) Environ. Int. 34(3): 318-329.

Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, Grindstaff KK, Mengesha W, Raman C, Zerangue N 2008 Expression of the thyroid hormone transporters MCT8 (SLC16A2) and OATP14 (SLCO1C1) at the blood-brain barrier. Endocrinology 149:6251-6261

Rotroff, D.M., B.A. Wetmore, D.J. Dix, S.S. Ferguson, H.J. Clewell, K.A. Houck, E.L. Lecluyse, M.E. Anersen, R.S. Judson, C.M. Smith, M.A. Sochaski, R.J. Kavlock, F. Boellmann, M.T. Martin, D.M. Reif, J.F. Wambaugh and R.S. Thomas. (2010) Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening.  117(2): 348-358.

Sato, K., J. Sugawara, T. Sato, H. Mizutamari, T. Suzuki, A. Ito, T. Mikkaichi, T. Onogawa, M. Tanemoto, M. Unno, T. Abe and K. Okamura.  (2003)  Expression of organic anion transporting polypeptide E (OATP-E) in human placenta.  Placenta  24(2-3): 144-148.

Schreiber, G. (2002). The evolutionary and integrative roles of transthyrein in thyroid hormone homeostasis. Journal of Endocrinology, 175(1), 61–73. http://doi.org/10.1677/joe.0.1750061

Schroder van der Elst, J.P., D. van der Heide, H. Rokos, G. Morreale de Escobar and J. Kohrlre. (1998) Synthetic flavonoids cross the placenta in the rat and are found in fetal brain.  Am. J. Physiol.  274(2 Psrt 1): E253-E256.

Schroder van der Elst, J.P., D. van der Heide, H. Rokos, J. Kohrle and G. Morreale de Escobar. (1997)  Different tissue distribution, elimination, and kinetics of thyroxine and its conformational analog, the synthetic flavonoid EMD 49209 in the rat.  Endocrinology  138(1): 79-84.

Schuur, A.G., F.M. Boekhorst, A. Brouwer and T.J. Visser. (1997) Extrathyroidal effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on thyroid hormone turnover in male Sprague-Dawley rats.  Endocrinology  138(9): 3727-3734.

Sinjari, T. and P.O. Darnerud. (1998) Hydroxylated polychlorinated biphenyls: placental transfer and effects on thyroxine in the foetal mouse.  Xenobiotica  28(1): 21-30.

Sparkes, R.S., H. Sasaki, T. Mohandas, K. Yoshioka, I. Kilsak, Y. Sasaki, C. Heinzmann and M.I. Simon. (1987) Assignment of the prealbumin (PALB) gene (familial amyloidotic polyneuropathy) to human chromosome region 18q11.2-q12.1. Hum. Genet.  75(2): 151-154.

Stapleton, H.M., S.M. Kelly, R. Pei, R.J. Letcher and C. Gunsch.  (2009) Metabolism of polybrominated diphenyl ethers (PBDEs) by human hepatocytes in vitro.  Environ. Health Perspect.  117(2): 197-202.

Tohyama K, Kusuhara H, Sugiyama Y 2004 Involvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood-brain barrier. Endocrinology

Ucan-Marin, F., A. Arukwe, A.S. Mortensen, G.W. Gabrielsen and R.J. Letcher. (2010) Recombinant albumin and transthyretin transport proteins from two gull species and human: chlorinated and brominated contaminant binding and thyroid hormones.  Environ. Sci. Technol.  44(1): 497-504.

Van Birgelen, A.P., E.A. Smit, I.M. Kampen, C.N. Groeneveld, K.M. Case, J. Van der Kolk, H. Poiger, M. Van den Berg, J.H. Koeman and A. Brouwer. (1995) Subchronic effects of 2,3,7,8-TCDD or PCBs on thyroid hormone metabolism: use in risk assessment.  Eur. J. Pharmacol.  293(1) : 77-85.

Van den Berg, K. J. (1990). Interaction of chlorinated phenols with thyroxine binding sites of human transthyretin, albumin and thyroid binding globulin. Chemico-Biological Interactions, 76(1), 63–75.

Van den Berg, K. J., Van Raaij, J. a G. M., Bragt, P. C., & Notten, W. R. F. (1991). Interactions of halogenated industrial chemicals with transthyretin and effects on thyroid hormone levels in vivo. Archives of Toxicology, 65(1), 15–19.

Viberg, H., A. Fredriksson and P. Eriksson. (2002) Neonatal exposure to the brominated flame retardant 2,2',4,4',5-pentabromodiphenyl ether causes altered susceptibility in the cholinergic transmitter system in the adult mouse.  Toxicol. Sci. 67(1): 104-107.

Viollon-Abadie, C., D. Lassere, E. Debruyne, L. Nicod, N. Carmichael and L. Richert. (1999) Phenobarbital, beta-naphthoflavone, clofibrate, and pregnenolone-16alpha-carbonitrile do not affect hepatic thyroid hormone UDP-glucuronosyl transferase activity, and thyroid gland function in mice.  Toxicol. Appl. Pharmacol.  155(1) 1-12.

Visser, T.J. and R.P. Peeters. (2012) Metabolism of thyroid hormone.  In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-.

Visser, T. J. (2010). Cellular Uptake of Thyroid Hormones. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-.

Visser, T.J. (1996) Role of sulfate in thyroid hormone sulfation.  Eur. J. Endocrinol.  134(1): 12-14.

Visser, T.J., E. Kaptein, J.A. van Raaij, C.T. Joe, T. Ebner and B. Burchell. (1993)

Multiple UDP-glucuronyltransferases for the glucuronidation of thyroid hormone with preference for 3,3',5'-triiodothyronine (reverse T3).  FEBS Lett.  315(1): 65-68.

Weiss, J.M., P.L. Andersson, M.H. Lamoree, P.E. Leonards, S.P. van Leeuwen and T. Hamers. (2009) Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin.  Toxicol. Sci.  109(2): 206-216.

Weiss, J. M., Andersson, P. L., Zhang, J., Simon, E., Leonards, P. E. G., Hamers, T., & Lamoree, M. H. (2015). Tracing thyroid hormone-disrupting compounds: database compilation and structure-activity evaluation for an effect-directed analysis of sediment. Analytical and Bioanalytical Chemistry, 5625–5634. http://doi.org/10.1007/s00216-015-8736-9

Yamauchi, K., A. Ishihara, H. Fukazawa and Y. Terao.  (2003) Competitive interactions of chlorinated phenol compounds with 3,3',5-triiodothyronine binding to transthyretin: detection of possible thyroid-disrupting chemicals in environmental waste water.  Toxicol. Appl. Pharmacol.  187(2): 110-117.

Yen, P. M. (2001). Physiological and molecular basis of thyroid hormone action. Physiological Reviews, 81(3), 1097–1142.

Zhang, J., J.H. Kamstra, M. Ghorbanzadeh, J.M. Weiss, T. Hamers and P.L. Andersson. (2015) In Silico Approach To Identify Potential Thyroid Hormone Disruptors among Currently Known Dust Contaminants and Their Metabolites.  Environ. Sci. Technol.  49(16): 10099-10107.

Zoeller, R. T., Tan, S. W., & Tyl, R. W. (2007). General background on the hypothalamic-pituitary-thyroid (HPT) axis. Critical Reviews in Toxicology, 37(1-2), 11–53.

Zoeller, R.T. and J. Rovet.  (2004)  Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings.  J. Neuroendocrinol.  16(10): 809-818.