To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KE:1524

Event: 1524

Key Event Title

The KE title should describe a discrete biological change that can be measured. It should generally define the biological object or process being measured and whether it is increased, decreased, or otherwise definably altered relative to a control state. For example “enzyme activity, decreased”, “hormone concentration, increased”, or “growth rate, decreased”, where the specific enzyme or hormone being measured is defined. More help

Increase, Premature molting

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. The short name should be less than 80 characters in length. More help
Increase, Premature molting

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. Note, KEs should be defined within a particular level of biological organization. Only KERs should be used to transition from one level of organization to another. Selection of the level of biological organization defines which structured terms will be available to select when defining the Event Components (below). More help

Key Event Components

Further information on Event Components and Biological Context may be viewed on the attached pdf.Because one of the aims of the AOP-KB is to facilitate de facto construction of AOP networks through the use of shared KE and KER elements, authors are also asked to define their KEs using a set of structured ontology terms (Event Components). In the absence of structured terms, the same KE can readily be defined using a number of synonymous titles (read by a computer as character strings). In order to make these synonymous KEs more machine-readable, KEs should also be defined by one or more “event components” consisting of a biological process, object, and action with each term originating from one of 22 biological ontologies (Ives, et al., 2017; See List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling). The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signalling by that receptor).Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description. To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons. If a desired term does not exist, a new term request may be made via Term Requests. Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add. More help
Process Object Action
ecdysis, chitin-based cuticle decreased

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE. Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
SAM depletion leading to population decline (2) KeyEvent You Song (send email) Under development: Not open for comment. Do not cite
SAM depletion leading to population decline (1) KeyEvent You Song (send email) Under development: Not open for comment. Do not cite
Chitinase inhibition leading to mortality KeyEvent Simon Schmid (send email) Under development: Not open for comment. Do not cite
Chitobiase inhibition leading to mortality KeyEvent Simon Schmid (send email) Under development: Not open for comment. Do not cite
CHS-1 inhibition leading to mortality KeyEvent Simon Schmid (send email) Open for comment. Do not cite
SUR binding leading to mortality KeyEvent Simon Schmid (send email) Under development: Not open for comment. Do not cite

Stressors

This is a structured field used to identify specific agents (generally chemicals) that can trigger the KE. Stressors identified in this field will be linked to the KE in a machine-readable manner, such that, for example, a stressor search would identify this as an event the stressor can trigger. NOTE: intermediate or downstream KEs in one AOP may function as MIEs in other AOPs, meaning that stressor information may be added to the KE description, even if it is a downstream KE in the pathway currently under development.Information concerning the stressors that may trigger an MIE can be defined using a combination of structured and unstructured (free-text) fields. For example, structured fields may be used to indicate specific chemicals for which there is evidence of an interaction relevant to this MIE. By linking the KE description to a structured chemical name, it will be increasingly possible to link the MIE to other sources of chemical data and information, enhancing searchability and inter-operability among different data-sources and knowledgebases. The free-text section “Evidence for perturbation of this MIE by stressor” can be used both to identify the supporting evidence for specific stressors triggering the MIE as well as to define broad chemical categories or other properties that classify the stressors able to trigger the MIE for which specific structured terms may not exist. More help

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) can be selected from an ontology. In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
Pieris brassicae Pieris brassicae High NCBI
Lucilia cuprina Lucilia cuprina High NCBI

Life Stages

The structured ontology terms for life-stage are more comprehensive than those for taxa, but may still require further description/development and explanation in the free text section. More help
Life stage Evidence
larvae High
Juvenile High
Adult Moderate

Sex Applicability

No help message More help
Term Evidence
Unspecific Moderate

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. For example, the biological state being measured could be the activity of an enzyme, the expression of a gene or abundance of an mRNA transcript, the concentration of a hormone or protein, neuronal activity, heart rate, etc. The biological compartment may be a particular cell type, tissue, organ, fluid (e.g., plasma, cerebrospinal fluid), etc. The role in the biology could describe the reaction that an enzyme catalyses and the role of that reaction within a given metabolic pathway; the protein that a gene or mRNA transcript codes for and the function of that protein; the function of a hormone in a given target tissue, physiological function of an organ, etc. Careful attention should be taken to avoid reference to other KEs, KERs or AOPs. Only describe this KE as a single isolated measurable event/state. This will ensure that the KE is modular and can be used by other AOPs, thereby facilitating construction of AOP networks. More help

This key event is measured on the level of the individual. In order to grow and develop, arthropods need to shed their exoskeleton periodically (molting) (Heming 2018). During molting, the newly secreted cuticle is subject to mechanical stress associated and therefore needs to possess enough structural and functional integrity. The ecdysis motor program, which constitutes the behavioral part of the cuticle shedding requires the newly secreted cuticle to possess a certain strength to support for muscular force in order to shed the old cuticle (Ewer 2005). Cuticular integrity is also important after ecdysis, as insects and crustaceans expand their new cuticle by increasing internal pressure by swallowing air and water, respectively. This happens in order to expand and provide stability to the new cuticle until it is hardened (tanned) (Clarke 1957; Lee 1961; Dall et al. 1978; deFur et al. 1985). If arthropods are not able to molt properly, the organism will eventually die. Premature molting describes the unsuccessful molting where the organism is not able to shed the old cuticle, but also other effects related to molting in an immature stage where the new cuticle is not mature enough for the molt, such as rupture of the new cuticle and associated desiccation, deformities, higher susceptibility to pathogens or impaired locomotion. Specific effects observed are animals stuck in their exuviae (Wang et al., 2019), and if molting can be completed despite an immature cuticle, animals might be smaller and die at subsequent molts (Arakawa et al., 2008; Chen et al., 2008; Mohammed et al., 2017).

How It Is Measured or Detected

One of the primary considerations in evaluating AOPs is the relevance and reliability of the methods with which the KEs can be measured. The aim of this section of the KE description is not to provide detailed protocols, but rather to capture, in a sentence or two, per method, the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements. Methods that can be used to detect or measure the biological state represented in the KE should be briefly described and/or cited. These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA).Key considerations regarding scientific confidence in the measurement approach include whether the assay is fit for purpose, whether it provides a direct or indirect measure of the biological state in question, whether it is repeatable and reproducible, and the extent to which it is accepted in the scientific and/or regulatory community. Information can be obtained from the OECD Test Guidelines website and the EURL ECVAM Database Service on Alternative Methods to Animal Experimentation (DB-ALM). ?

Premature molting can be determined by observation. No standardized tests for the endpoint of molting exist to date. However, during an OECD 202 Daphnia sp. Acute immobilization test (OECD 2004), the cumulative number of molts can be assessed as an additional endpoint. Molting can also be assessed during a OECD 211 Daphnia sp. Reproduction test (OECD 2012), as proposed previously (OECD 2003). One could even prolong the test to 96h to get a clearer result of this endpoint. Additionally, one could apply histopathological methods to monitor the maturity of the newly synthesized cuticle (e.g. thickness of procuticle).

Domain of Applicability

This free text section should be used to elaborate on the scientific basis for the indicated domains of applicability and the WoE calls (if provided). While structured terms may be selected to define the taxonomic, life stage and sex applicability (see structured applicability terms, above) of the KE, the structured terms may not adequately reflect or capture the overall biological applicability domain (particularly with regard to taxa). Likewise, the structured terms do not provide an explanation or rationale for the selection. The free-text section on evidence for taxonomic, life stage, and sex applicability can be used to elaborate on why the specific structured terms were selected, and provide supporting references and background information.  More help

Taxonomic: Effect data for the occurrence of this KE exist from Pieris brassicae and Lucilia cuprina. However, all arthropods undergo molting, so it is highly likely that this KE is applicable to the whole phylum of arthropods.

Life stage: This KE is applicable for organisms that undergo molting in order to grow and develop, namely larval stages of insects and all life stages of crustaceans and arachnids.

Sex: This KE is applicable to all sexes.

Chemical: Substances known to induce premature molting are of the family of pyrimidine nucleosides (e.g. polyoxin D and nikkomycin Z) (Gijswijt et al. 1979; Tellam et al. 2000; Arakawa et al. 2008).

Evidence for Perturbation by Stressor

References

List of the literature that was cited for this KE description. Ideally, the list of references, should conform, to the extent possible, with the OECD Style Guide (https://www.oecd.org/about/publishing/OECD-Style-Guide-Third-Edition.pdf) (OECD, 2015). More help

Arakawa T, Yukuhiro F, Noda H. 2008. Insecticidal effect of a fungicide containing polyoxin B on the larvae of Bombyx mori (Lepidoptera: Bombycidae), Mamestra brassicae, Mythimna separata, and Spodoptera litura (Lepidoptera: Noctuidae). Appl Entomol Zool. 43(2):173–181. doi:10.1303/aez.2008.173.

Chen, X.; Tian, H.; Zou, L.; Tang, B.; Hu, J.; Zhang, W. Disruption of Spodoptera Exigua Larval Development by Silencing Chitin Synthase Gene A with RNA Interference. Bull. Entomol. Res. 2008, 98 (6), 613–619. https://doi.org/10.1017/S0007485308005932.

Clarke KU. 1957. On the Increase in Linear Size During Growth in Locusta Migratoria L. Proc R Entomol Soc London Ser A, Gen Entomol. 32(1– 3):35–39. doi:10.1111/j.1365-3032.1957.tb00361.x.

Dall W, Smith DM, Press B. 1978. Water uptake at ecdysis in the western rock lobster. J Exp Mar Bio Ecol. 35(1960). doi:10.1016/0022- 0981(78)90074-6.

deFur PL, Mangum CP, McMahon BR. 1985. Cardiovascular and Ventilatory Changes During Ecdysis in the Blue Crab Callinectes Sapidus Rathbun. J Crustac Biol. 5(2):207–215. doi:10.2307/1547867.

Ewer J. 2005. How the ecdysozoan changed its coat. PLoS Biol. 3(10):1696–1699. doi:10.1371/journal.pbio.0030349.

Gijswijt MJ, Deul DH, de Jong BJ. 1979. Inhibition of chitin synthesis by benzoyl-phenylurea insecticides, III. Similarity in action in Pieris brassicae (L.) with Polyoxin D. Pestic Biochem Physiol. 12(1):87–94. doi:10.1016/0048-3575(79)90098-1.

Heming BS. 2018. Insect development and evolution. Ithaca: Cornell University Press.

Mohammed, A. M. A.; DIab, M. R.; Abdelsattar, M.; Khalil, S. M. S. Characterization and RNAi-Mediated Knockdown of Chitin Synthase A in the Potato Tuber Moth, Phthorimaea Operculella. Sci. Rep. 2017, 7 (1), 1–12. https://doi.org/10.1038/s41598-017-09858-y.

Lee RM. 1961. The variation of blood volume with age in the desert locust (Schistocerca gregaria Forsk.). J Insect Physiol. 6(1):36–51. doi:10.1016/0022-1910(61)90090-7.

OECD (2003), Proposal for an Enhanced Test Guideline. Daphnia magna Reproduction Test. Draft OECD Guidel. Test. Chem. Enhanc. Tech. Guid. Doc. 211 21.

OECD (2004), Test No. 202: Daphnia sp. Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, https://doi.org/10.1787/9789264069947-en.

OECD (2012), Test No. 211: Daphnia magna Reproduction Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris, https://doi.org/10.1787/9789264185203-en.

Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD. 2000. Insect chitin synthase. cDNA sequence, gene organization and expression. Eur J Biochem. 267(19):6025–6043. doi:10.1046/j.1432-1327.2000.01679.x.

Wang, Z.; Yang, H.; Zhou, C.; Yang, W. J.; Jin, D. C.; Long, G. Y. Molecular Cloning, Expression, and Functional Analysis of the Chitin Synthase 1 Gene and Its Two Alternative Splicing Variants in the White-Backed Planthopper, Sogatella Furcifera (Hemiptera: Delphacidae). Sci. Rep. 2019, 9 (1), 1–14. https://doi.org/10.1038/s41598-018-37488-5.