To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KE:286

Event: 286

Key Event Title

The KE title should describe a discrete biological change that can be measured. It should generally define the biological object or process being measured and whether it is increased, decreased, or otherwise definably altered relative to a control state. For example “enzyme activity, decreased”, “hormone concentration, increased”, or “growth rate, decreased”, where the specific enzyme or hormone being measured is defined. More help

Altered, Transcription of genes by AR

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. The short name should be less than 80 characters in length. More help
Altered, Transcription of genes by AR

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. Note, KEs should be defined within a particular level of biological organization. Only KERs should be used to transition from one level of organization to another. Selection of the level of biological organization defines which structured terms will be available to select when defining the Event Components (below). More help
Level of Biological Organization
Cellular

Cell term

Further information on Event Components and Biological Context may be viewed on the attached pdf.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable. More help
Cell term
eukaryotic cell

Organ term

Further information on Event Components and Biological Context may be viewed on the attached pdf.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable. More help

Key Event Components

Further information on Event Components and Biological Context may be viewed on the attached pdf.Because one of the aims of the AOP-KB is to facilitate de facto construction of AOP networks through the use of shared KE and KER elements, authors are also asked to define their KEs using a set of structured ontology terms (Event Components). In the absence of structured terms, the same KE can readily be defined using a number of synonymous titles (read by a computer as character strings). In order to make these synonymous KEs more machine-readable, KEs should also be defined by one or more “event components” consisting of a biological process, object, and action with each term originating from one of 22 biological ontologies (Ives, et al., 2017; See List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling). The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signalling by that receptor).Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description. To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons. If a desired term does not exist, a new term request may be made via Term Requests. Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add. More help
Process Object Action
regulation of gene expression androgen receptor decreased

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE. Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
AR antagonism leading to foetal feminisation KeyEvent Mukesh Patel (send email) Open for adoption
Decreased testosterone synthesis leading to short AGD KeyEvent Terje Svingen (send email) Under development: Not open for comment. Do not cite Under Development
AR antagonism leading to NR KeyEvent Terje Svingen (send email) Under development: Not open for comment. Do not cite
AR antagonism leading to decreased fertility KeyEvent Terje Svingen (send email) Under development: Not open for comment. Do not cite
5α-reductase inhibition leading to short AGD KeyEvent Terje Svingen (send email) Under development: Not open for comment. Do not cite Under Development

Stressors

This is a structured field used to identify specific agents (generally chemicals) that can trigger the KE. Stressors identified in this field will be linked to the KE in a machine-readable manner, such that, for example, a stressor search would identify this as an event the stressor can trigger. NOTE: intermediate or downstream KEs in one AOP may function as MIEs in other AOPs, meaning that stressor information may be added to the KE description, even if it is a downstream KE in the pathway currently under development.Information concerning the stressors that may trigger an MIE can be defined using a combination of structured and unstructured (free-text) fields. For example, structured fields may be used to indicate specific chemicals for which there is evidence of an interaction relevant to this MIE. By linking the KE description to a structured chemical name, it will be increasingly possible to link the MIE to other sources of chemical data and information, enhancing searchability and inter-operability among different data-sources and knowledgebases. The free-text section “Evidence for perturbation of this MIE by stressor” can be used both to identify the supporting evidence for specific stressors triggering the MIE as well as to define broad chemical categories or other properties that classify the stressors able to trigger the MIE for which specific structured terms may not exist. More help

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) can be selected from an ontology. In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
human Homo sapiens High NCBI
rat Rattus norvegicus High NCBI
mouse Mus musculus High NCBI

Life Stages

The structured ontology terms for life-stage are more comprehensive than those for taxa, but may still require further description/development and explanation in the free text section. More help
Life stage Evidence
Foetal High
Adult, reproductively mature High

Sex Applicability

The authors must select from one of the following: Male, female, mixed, asexual, third gender, hermaphrodite, or unspecific. More help
Term Evidence
Mixed High

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. For example, the biological state being measured could be the activity of an enzyme, the expression of a gene or abundance of an mRNA transcript, the concentration of a hormone or protein, neuronal activity, heart rate, etc. The biological compartment may be a particular cell type, tissue, organ, fluid (e.g., plasma, cerebrospinal fluid), etc. The role in the biology could describe the reaction that an enzyme catalyses and the role of that reaction within a given metabolic pathway; the protein that a gene or mRNA transcript codes for and the function of that protein; the function of a hormone in a given target tissue, physiological function of an organ, etc. Careful attention should be taken to avoid reference to other KEs, KERs or AOPs. Only describe this KE as a single isolated measurable event/state. This will ensure that the KE is modular and can be used by other AOPs, thereby facilitating construction of AOP networks. More help

The Androgen Receptor and its function

Androgens act by binding to the Androgen receptor (AR) in androgen-responsive tissues (Davey and Grossmann 2016). Human AR mutations and mouse knockout models have established the fundamental role of AR in masculinization and spermatogenesis (Maclean et al.; Walters et al. 2010; Rana et al. 2014). The AR is also expressed in many other tissues such as bone, muscles, ovaries and within the immune system (Rana et al. 2014).

Altered transcription of genes by the AR as a Key Event

The AR belongs to the steroid hormone nuclear receptor family. It is a ligand-activated transcription factor with three domains; the N-terminal domain, the DNA-binding domain, and the ligand-binding domain with the latter being the most evolutionary conserved (Davey and Grossmann 2016). Upon activation by ligand-binding, the AR translocate from the cytoplasm to the cell nucleus, dimerizes, binds to androgen response elements in the DNA to modulate gene transcription (Davey and Grossmann 2016). The transcriptional targets varies between different cells and tissues, as well as with developmental stages and is, for instance, dependent on available co-regulators (Bevan and Parker 1999; Heemers and Tindall 2007).

Several known and proposed target genes of AR canonical signaling have been identified by analysis of gene expression following treatments with AR agonists (Bolton et al. 2007; Ngan et al. 2009) and can for instance be found in the Androgen-Responsive Gene Database (Jiang et al. 2009).

How It Is Measured or Detected

One of the primary considerations in evaluating AOPs is the relevance and reliability of the methods with which the KEs can be measured. The aim of this section of the KE description is not to provide detailed protocols, but rather to capture, in a sentence or two, per method, the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements. Methods that can be used to detect or measure the biological state represented in the KE should be briefly described and/or cited. These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA).Key considerations regarding scientific confidence in the measurement approach include whether the assay is fit for purpose, whether it provides a direct or indirect measure of the biological state in question, whether it is repeatable and reproducible, and the extent to which it is accepted in the scientific and/or regulatory community. Information can be obtained from the OECD Test Guidelines website and the EURL ECVAM Database Service on Alternative Methods to Animal Experimentation (DB-ALM). ?

In vitro

Decreased transcription of genes by the AR can be measured by measuring the transcription level of known downstream target genes by RT-qPCR or other transcription analyses approaches, eg transcriptomics.

Indirect approaches include the use of transient or stable transactivation assays including the validated OECD test guideline assay, Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals (OECD 2016). The stably transfected AR-EcoScreenTM cell line is freely available for the Japanese Collection of Research Bioresources (JCRB) Cell Bank under reference number JCRB1328. These cell-based transcriptional activation assays are typically used to detect AR agonists and antagonists. However, these types of assays are well suited to measure this KE as what they measure is exactly AR transcriptional activity. Other assays along this line include the AR-CALUX reporter gene assay that is derived from human U2-OS cells stably transfected with the human AR and an AR responsive reporter gene (van der Burg et al. 2010).

In vivo

Known downstream target gene transcription level can be measured in tissues by RT-qPCR or other gene expression analyses approaches.

Domain of Applicability

This free text section should be used to elaborate on the scientific basis for the indicated domains of applicability and the WoE calls (if provided). While structured terms may be selected to define the taxonomic, life stage and sex applicability (see structured applicability terms, above) of the KE, the structured terms may not adequately reflect or capture the overall biological applicability domain (particularly with regard to taxa). Likewise, the structured terms do not provide an explanation or rationale for the selection. The free-text section on evidence for taxonomic, life stage, and sex applicability can be used to elaborate on why the specific structured terms were selected, and provide supporting references and background information.  More help

Both the DNA-binding and ligand-binding domains of the AR are highly evolutionary conserved, whereas the transactivation domain show more divergence, which may affect AR-mediated gene regulation across species (Davey and Grossmann 2016).  Despite certain inter-species differences, AR function mediated through gene expression is highly conserved, with mutation studies from both humans and rodents showing strong correlation for AR-dependent development and function (Walters et al. 2010).

This KE is applicable for both sexes, across developmental stages into adulthood, in numerous cells and tissues and across taxa.

Evidence for Perturbation by Stressor

Bicalutamide

Using analysis of androgen-regulated gene expression in the LNCaP prostate cancer cell line (Ngan et al. 2009).

Cyproterone acetate

Using analysis of androgen-regulated gene expression in the LNCaP prostate cancer cell line (Ngan et al. 2009) and using the AR-CALUX reporter assay in antagonism mode, cyproterone acetate showed an IC50 of 7.1 nM (Sonneveld et al. 2005).

Epoxiconazole

Using transiently AR-transfected CHO cells, epoxiconazole showed a LOEC of 1.6 mM and an IC50 of 10 mM (Kjærstad et al. 2010).

Flutamide

Analysis of androgen-regulated gene expression in the LNCaP prostate cancer cell line (Ngan et al. 2009) and using the AR-CALUX reporter assay in antagonism mode, flutamide showed an IC50 of 1.3 uM (Sonneveld et al. 2005).

Flusilazole

Using hAR-EcoScreen Assay, triticonazole showed a LOEC for antagonisms of 0.8 mM and an IC50 of 2.8 (±0.1) mM (Draskau et al. 2019)

Prochloraz

Using gene expression analysis of the androgen-regulated genes ornithine decarboxylase, prostatic binding protein C3 as well as insulin-like growth factor I. Gene expression levels were reduced in ventral prostates of male Wistar pups at postnatal day 16 following in utero and lactational exposure from maternal perinatal dosing with prochloraz (50 and 150 mg/kg/day) from gestational day 7 to postnatal day 16 (Laier et al. 2006). Also, using transiently AR-transfected CHO cells, prochloraz showed a LOEC of 6.3 mM and an IC50 of 13 mM (Kjærstad et al. 2010).

Propiconazole

Using transiently AR-transfected CHO cells, propiconazole showed a LOEC of 12.5 mM and an IC50 of 18 mM (Kjærstad et al. 2010).

Stressor:286 Tebuconazole

Using transiently AR-transfected CHO cells, tebuconazole showed a LOEC of 3.1 mM and an IC50 of 8.1 mM (Kjærstad et al. 2010).

Triticonazole

Using hAR-EcoScreen Assay, triticonazole showed a LOEC for antagonisms of 0.2 mM and an IC50 of 0.3 (±0.01) mM (Draskau et al. 2019).

Vinclozalin

Using the AR-CALUX reporter assay in antagonism mode, vinclozolin showed an IC50of 1.0 uM (Sonneveld et al. 2005).

References

List of the literature that was cited for this KE description. Ideally, the list of references, should conform, to the extent possible, with the OECD Style Guide (https://www.oecd.org/about/publishing/OECD-Style-Guide-Third-Edition.pdf) (OECD, 2015). More help

Bevan C, Parker M (1999) The role of coactivators in steroid hormone action. Exp. Cell Res. 253:349–356

Bolton EC, So AY, Chaivorapol C, et al (2007) Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 21:2005–2017. doi: 10.1101/gad.1564207

Davey RA, Grossmann M (2016) Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin Biochem Rev 37:3–15

Draskau MK, Boberg J, Taxvig C, et al (2019) In vitro and in vivo endocrine disrupting effects of the azole fungicides triticonazole and flusilazole. Environ Pollut 255:113309. doi: 10.1016/j.envpol.2019.113309

Estrada M, Espinosa A, Müller M, Jaimovich E (2003) Testosterone Stimulates Intracellular Calcium Release and Mitogen-Activated Protein Kinases Via a G Protein-Coupled Receptor in Skeletal Muscle Cells. Endocrinology 144:3586–3597. doi: 10.1210/en.2002-0164

Heemers H V., Tindall DJ (2007) Androgen receptor (AR) coregulators: A diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28:778–808

Jiang M, Ma Y, Chen C, et al (2009) Androgen-Responsive Gene Database: Integrated Knowledge on Androgen-Responsive Genes. Mol Endocrinol 23:1927–1933. doi: 10.1210/me.2009-0103

Kjærstad MB, Taxvig C, Nellemann C, et al (2010) Endocrine disrupting effects in vitro of conazole antifungals used as pesticides and pharmaceuticals. Reprod Toxicol 30:573–582. doi: 10.1016/J.REPROTOX.2010.07.009

Laier P, Metzdorff SB, Borch J, et al (2006) Mechanisms of action underlying the antiandrogenic effects of the fungicide prochloraz. Toxicol Appl Pharmacol 213:160–71. doi: 10.1016/j.taap.2005.10.013

Maclean HE, Chu S, Warne GL, Zajact JD Related Individuals with Different Androgen Receptor Gene Deletions

MacLeod DJ, Sharpe RM, Welsh M, et al (2010) Androgen action in the masculinization programming window and development of male reproductive organs. In: International Journal of Andrology. Blackwell Publishing Ltd, pp 279–287

Ngan S, Stronach EA, Photiou A, et al (2009) Microarray coupled to quantitative RT–PCR analysis of androgen-regulated genes in human LNCaP prostate cancer cells. Oncogene 28:2051–2063. doi: 10.1038/onc.2009.68

OECD (2016) Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals, OECD Guide. OECD Publishing

Rana K, Davey RA, Zajac JD (2014) Human androgen deficiency: Insights gained from androgen receptor knockout mouse models. Asian J. Androl. 16:169–177

Sonneveld E, Jansen HJ, Riteco JAC, et al (2005) Development of Androgen-and Estrogen-Responsive Bioassays, Members of a Panel of Human Cell Line-Based Highly Selective Steroid-Responsive Bioassays. Toxicol Sci 83:136–148. doi: 10.1093/toxsci/kfi005

van der Burg B, Winter R, Man H yen, et al (2010) Optimization and prevalidation of the in vitro AR CALUX method to test androgenic and antiandrogenic activity of compounds. Reprod Toxicol 30:18–24. doi: 10.1016/j.reprotox.2010.04.012

Walters KA, Simanainen U, Handelsman DJ (2010) Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum Reprod Update 16:543–558. doi: 10.1093/humupd/dmq003