To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KER:315

Relationship: 315

Title

A descriptive phrase which clearly defines the two KEs being considered and the sequential relationship between them (i.e., which is upstream, and which is downstream). More help

Reduction, Vitellogenin synthesis in liver leads to Reduction, Plasma vitellogenin concentrations

Upstream event
The causing Key Event (KE) in a Key Event Relationship (KER). More help
Downstream event
The responding Key Event (KE) in a Key Event Relationship (KER). More help

Key Event Relationship Overview

The utility of AOPs for regulatory application is defined, to a large extent, by the confidence and precision with which they facilitate extrapolation of data measured at low levels of biological organisation to predicted outcomes at higher levels of organisation and the extent to which they can link biological effect measurements to their specific causes. Within the AOP framework, the predictive relationships that facilitate extrapolation are represented by the KERs. Consequently, the overall WoE for an AOP is a reflection in part, of the level of confidence in the underlying series of KERs it encompasses. Therefore, describing the KERs in an AOP involves assembling and organising the types of information and evidence that defines the scientific basis for inferring the probable change in, or state of, a downstream KE from the known or measured state of an upstream KE. More help

AOPs Referencing Relationship

AOP Name Adjacency Weight of Evidence Quantitative Understanding Point of Contact Author Status OECD Status
Aromatase inhibition leading to reproductive dysfunction adjacent High Moderate Dan Villeneuve (send email) Open for citation & comment WPHA/WNT Endorsed
Androgen receptor agonism leading to reproductive dysfunction (in repeat-spawning fish) adjacent High Moderate Dan Villeneuve (send email) Open for citation & comment WPHA/WNT Endorsed
Estrogen receptor antagonism leading to reproductive dysfunction adjacent High Moderate Dan Villeneuve (send email) Open for citation & comment EAGMST Under Review
Prolyl hydroxylase inhibition leading to reproductive dysfunction via increased HIF1 heterodimer formation adjacent High High Dalma Martinovic-Weigelt (send email) Under Development: Contributions and Comments Welcome
Unknown MIE leading to reproductive dysfunction via increased HIF-1alpha transcription adjacent Dalma Martinovic-Weigelt (send email) Under Development: Contributions and Comments Welcome
Embryonic Activation of the AHR leading to Reproductive failure, via epigenetic down-regulation of GnRHR adjacent High Moderate Jon Doering (send email) Under development: Not open for comment. Do not cite

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KER.In general, this will be dictated by the more restrictive of the two KEs being linked together by the KER.  More help
Term Scientific Term Evidence Link
fathead minnow Pimephales promelas Moderate NCBI

Sex Applicability

An indication of the the relevant sex for this KER. More help
Sex Evidence
Unspecific Not Specified

Life Stage Applicability

An indication of the the relevant life stage(s) for this KER.  More help
Term Evidence
Adult, reproductively mature Not Specified

Key Event Relationship Description

Provides a concise overview of the information given below as well as addressing details that aren’t inherent in the description of the KEs themselves. More help

See biological plausibility, below.

Evidence Collection Strategy

Include a description of the approach for identification and assembly of the evidence base for the KER.  For evidence identification, include, for example, a description of the sources and dates of information consulted including expert knowledge, databases searched and associated search terms/strings.  Include also a description of study screening criteria and methodology, study quality assessment considerations, the data extraction strategy and links to any repositories/databases of relevant references.Tabular summaries and links to relevant supporting documentation are encouraged, wherever possible. More help

Evidence Supporting this KER

Addresses the scientific evidence supporting KERs in an AOP setting the stage for overall assessment of the AOP. More help

Updated 03/20/2017.

Biological Plausibility
Addresses the biological rationale for a connection between KEupstream and KEdownstream.  This field can also incorporate additional mechanistic details that help inform the relationship between KEs, this is useful when it is not practical/pragmatic to represent these details as separate KEs due to the difficulty or relative infrequency with which it is likely to be measured.   More help

Liver is the major source of VTG protein production in fish (Tyler and Sumpter 1996; Arukwe and Goksøyr 2003). Protein production involves transcription and subsequent translation. The time-lag between decreases in transcription/translation and decreases in plasma VTG concentrations can be expected to be dependent on vitellogenin elimination half-lives.

Uncertainties and Inconsistencies
Addresses inconsistencies or uncertainties in the relationship including the identification of experimental details that may explain apparent deviations from the expected patterns of concordance. More help

There are no known inconsistencies between these KERs which are not readily explained on the basis of the expected dose, temporal, and incidence relationships between these two KERs. This applies across a significant body of literature in which these two KEs have been measured.

Known modulating factors

This table captures specific information on the MF, its properties, how it affects the KER and respective references.1.) What is the modulating factor? Name the factor for which solid evidence exists that it influences this KER. Examples: age, sex, genotype, diet 2.) Details of this modulating factor. Specify which features of this MF are relevant for this KER. Examples: a specific age range or a specific biological age (defined by...); a specific gene mutation or variant, a specific nutrient (deficit or surplus); a sex-specific homone; a certain threshold value (e.g. serum levels of a chemical above...) 3.) Description of how this modulating factor affects this KER. Describe the provable modification of the KER (also quantitatively, if known). Examples: increase or decrease of the magnitude of effect (by a factor of...); change of the time-course of the effect (onset delay by...); alteration of the probability of the effect; increase or decrease of the sensitivity of the downstream effect (by a factor of...) 4.) Provision of supporting scientific evidence for an effect of this MF on this KER. Give a list of references.  More help
Response-response Relationship
Provides sources of data that define the response-response relationships between the KEs.  More help
Time-scale
Information regarding the approximate time-scale of the changes in KEdownstream relative to changes in KEupstream (i.e., do effects on KEdownstream lag those on KEupstream by seconds, minutes, hours, or days?). More help
Known Feedforward/Feedback loops influencing this KER
Define whether there are known positive or negative feedback mechanisms involved and what is understood about their time-course and homeostatic limits. More help

Domain of Applicability

A free-text section of the KER description that the developers can use to explain their rationale for the taxonomic, life stage, or sex applicability structured terms. More help

This KER primarily applies to taxa that synthesize vitellogenin in the liver which is transported elsewhere in the body via plasma (i.e., oviparous vertebrates).

References

List of the literature that was cited for this KER description. More help
  •  

  • Ankley GT, Bencic D, Cavallin JE, Jensen KM, Kahl MD, Makynen EA, et al. 2009b. Dynamic nature of alterations in the endocrine system of fathead minnows exposed to the fungicide prochloraz. Toxicol Sci 112(2): 344-353.
  • Ankley GT, Bencic DC, Cavallin JE, Jensen KM, Kahl MD, Makynen EA, et al. 2009a. Dynamic nature of alterations in the endocrine system of fathead minnows exposed to the fungicide prochloraz. Toxicological sciences : an official journal of the Society of Toxicology 112(2): 344-353.
  • Ankley GT, Miller DH, Jensen KM, Villeneuve DL, Martinovic D. 2008. Relationship of plasma sex steroid concentrations in female fathead minnows to reproductive success and population status. Aquatic toxicology 88(1): 69-74.
  • Arukwe A, Goksøyr A. 2003. Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comparative Hepatology 2(4): 1-21.
  • Bowman CJ, Kroll KJ, Hemmer MJ, Folmar LC, Denslow ND. 2000. Estrogen-induced vitellogenin mRNA and protein in sheepshead minnow (Cyprinodon variegatus). General and comparative endocrinology 120(3): 300-313.
  • Genovese G, Regueira M, Piazza Y, Towle DW, Maggese MC, Lo Nostro F. 2012. Time-course recovery of estrogen-responsive genes of a cichlid fish exposed to waterborne octylphenol. Aquatic toxicology 114-115: 1-13.
  • Korte JJ, Kahl MD, Jensen KM, Mumtaz SP, Parks LG, LeBlanc GA, et al. 2000. Fathead minnow vitellogenin: complementary DNA sequence and messenger RNA and protein expression after 17B-estradiol treatment. Environmental Toxicology and Chemistry 19(4): 972-981.
  • Li Z, Kroll KJ, Jensen KM, Villeneuve DL, Ankley GT, Brian JV, et al. 2011a. A computational model of the hypothalamic: pituitary: gonadal axis in female fathead minnows (Pimephales promelas) exposed to 17alpha-ethynylestradiol and 17beta-trenbolone. BMC systems biology 5: 63.
  • Murphy CA, Rose KA, Rahman MS, Thomas P. 2009. Testing and applying a fish vitellogenesis model to evaluate laboratory and field biomarkers of endocrine disruption in Atlantic croaker (Micropogonias undulatus) exposed to hypoxia. Environmental toxicology and chemistry / SETAC 28(6): 1288-1303.
  • Murphy CA, Rose KA, Thomas P. 2005. Modeling vitellogenesis in female fish exposed to environmental stressors: predicting the effects of endocrine disturbance due to exposure to a PCB mixture and cadmium. Reproductive toxicology 19(3): 395-409.
  • Schmid T, Gonzalez-Valero J, Rufli H, Dietrich DR. 2002. Determination of vitellogenin kinetics in male fathead minnows (Pimephales promelas). Toxicol Lett 131(1-2): 65-74.
  • Schultz IR, Orner G, Merdink JL, Skillman A. 2001. Dose-response relationships and pharmacokinetics of vitellogenin in rainbow trout after intravascular administration of 17alpha-ethynylestradiol. Aquatic toxicology 51(3): 305-318.
  • Skolness SY, Durhan EJ, Garcia-Reyero N, Jensen KM, Kahl MD, Makynen EA, et al. 2011. Effects of a short-term exposure to the fungicide prochloraz on endocrine function and gene expression in female fathead minnows (Pimephales promelas). Aquat Toxicol 103(3-4): 170-178.
  • Tyler C, Sumpter J. 1996. Oocyte growth and development in teleosts. Reviews in Fish Biology and Fisheries 6: 287-318.
  • Villeneuve DL, Breen M, Bencic DC, Cavallin JE, Jensen KM, Makynen EA, et al. 2013. Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition: I. Data Generation in a Small Fish Model. Toxicological sciences : an official journal of the Society of Toxicology.
  • Villeneuve DL, Mueller ND, Martinovic D, Makynen EA, Kahl MD, Jensen KM, et al. 2009. Direct effects, compensation, and recovery in female fathead minnows exposed to a model aromatase inhibitor. Environ Health Perspect 117(4): 624-631.