Aop: 298

AOP Title


Wnt ligand stimulation and Wnt signalling activation lead to cancer malignancy

Short name:


Wnt activation leading to cancer malignancy

Graphical Representation


Click to download graphical representation template




Shihori Tanabe, Akihiko Hirose, Takashi Yamada

Point of Contact


Shihori Tanabe   (email point of contact)



  • Shihori Tanabe



Author status OECD status OECD project SAAOP status
Under development: Not open for comment. Do not cite

This AOP was last modified on May 29, 2019 22:39


Revision dates for related pages

Page Revision Date/Time
Wnt ligand stimulation May 29, 2019 21:13
Frizzled activation May 29, 2019 21:17
GSK3beta inactivation May 29, 2019 21:28
β-catenin activation May 29, 2019 21:39
Snail, Zeb, Twist activation May 29, 2019 21:44
Epithelial-mesenchymal transition, induced May 29, 2019 21:48
Cancer Malignancy May 29, 2019 22:01
Wnt ligand stimulation leads to Frizzled activation May 29, 2019 22:07
Frizzled activation leads to GSK3beta inactivation May 29, 2019 22:12
GSK3beta inactivation leads to β-catenin activation May 29, 2019 22:18
β-catenin activation leads to Snail, Zeb, Twist activation May 29, 2019 22:23
Snail, Zeb, Twist activation leads to Epithelial-mesenchymal transition, induced May 29, 2019 22:27
Epithelial-mesenchymal transition, induced leads to Cancer Malignancy May 29, 2019 22:32
Wnt May 29, 2019 03:59
WNT2 May 29, 2019 03:59



Wnt (Wingless and INT-1) ligands stimulate Frizzled receptors and activate Wnt signaling leading to cancer malignancy. This AOP workplan entitled “Wnt ligand stimulation and Wnt signaling activation lead to cancer malignancy” is suitable for the AOP programme in terms of revealing cancer signaling with the molecular signaling cascades induced by Wnt ligands. The current AOP includes MIE as Wnt ligand stimulation, KE1 as Frizzled activation, KE2 as GSK3beta inactivation, KE3 as beta-catenin activation, KE4 as Snail, Zeb, Twist1 activation, KE5 as epithelial-mesenchymal transition (EMT) and AO as cancer malignancy. The current AOP would be associated to the prediction of the cancer malignancy, which would be the regulatory toxicological endpoint, by chemicals or molecules activating Wnt signaling. The Wnt/beta-catenin signaling is well understood in terms of development and cancer. The relationship between EMT and cancer malignancy has recently been investigated in many research fields such as molecular signatures of cells.

Background (optional)


Summary of the AOP


Events: Molecular Initiating Events (MIE)


Key Events (KE)


Adverse Outcomes (AO)


Sequence Type Event ID Title Short name
MIE 1645 Wnt ligand stimulation Wnt ligand stimulation
KE 1646 Frizzled activation Frizzled activation
KE 1647 GSK3beta inactivation GSK3beta inactivation
KE 1648 β-catenin activation β-catenin activation
KE 1649 Snail, Zeb, Twist activation Snail, Zeb, Twist activation
KE 1650 Epithelial-mesenchymal transition, induced Epithelial-mesenchymal transition, induced
AO 1651 Cancer Malignancy Cancer Malignancy

Relationships Between Two Key Events
(Including MIEs and AOs)


Title Adjacency Evidence Quantitative Understanding
Wnt ligand stimulation leads to Frizzled activation adjacent High Moderate
Frizzled activation leads to GSK3beta inactivation adjacent High Moderate
GSK3beta inactivation leads to β-catenin activation adjacent High Moderate
β-catenin activation leads to Snail, Zeb, Twist activation adjacent High Moderate
Snail, Zeb, Twist activation leads to Epithelial-mesenchymal transition, induced adjacent High Moderate
Epithelial-mesenchymal transition, induced leads to Cancer Malignancy adjacent High Low

Network View





Name Evidence Term
Wnt High
WNT2 High

Life Stage Applicability


Life stage Evidence
All life stages High

Taxonomic Applicability


Term Scientific Term Evidence Link
Homo sapiens Homo sapiens High NCBI

Sex Applicability


Sex Evidence
Unspecific High

Overall Assessment of the AOP


Attached file: Aop298 overall assessment

1. Support for Biological Plausibility of KERs

MIE => KE1:
Wnt ligand stimulation leads to Frizzled activation

Biological Plausibility of the MIE => KE1 is high.
Ratioinale: Upon the stimulation with Wnt ligand, Wnt ligand binds to FZD and form the complex with LRP5/6 (MacDonald et al., 2009).

KE1 => KE2:
Frizzled activation leads to GSK3beta inactivation

Biological Plausibility of the KE1 => KE2 is high.
Ratioinale: Upon Wnt ligand stimulation, FZD is activated and Axin is recruited to the phosphorylated tail of LRP dimerized with the activated FZD, the seven-transmembrane receptor, followed by GSK3beta inactivation to prevent beta-catenin degradation (Aberle, Bauer, Stappert, Kispert, & Kemler, 1997) (Clevers & Nusse, 2012).

KE2 => KE3:
GSK3beta inactivation leads to β-catenin activation

Biological Plausibility of the KE2 => KE3 is high.
Ratioinale: GSK3beta recruitment to LRP6 leads to form un-phosphorylated beta-catenin inducing the stabilization and translocation of the beta-catenin (MacDonald, Tamai, & He, 2009).
Stabilized beta-catenin accumulates in cytosol and translocates into the nucleus leading to beta-catenin activation (MacDonald et al., 2009).

KE3 => KE4:
β-catenin activation leads to Snail, Zeb, Twist activation

Biological Plausibility of the KE3 => KE4 is high.
Ratioinale: The treatment of human gastric cancer cells with INC280, which inhibits c-MET overexpressed in diffuse-type gastric cancer with poor prognosis, shows downregulation in beta-catenin and Snail expression,  (Sohn et al., 2019).
The treatment with garcinol, a polyisoprenylated benzophenone derivative that is obtained from Garcinia indica extract, induced ZEB1 and ZEB2 down-regulation, increase in phosphorylated beta-catenin and decrease in nuclear beta-catenin in human breast cancer cells (Ahmad et al., 2012).
Sortilin, a member of the Vps10p sorting receptor family which is highly expressed in high-glade malignant glioma, positively regulates GSK-3beta/beta-catenin/Twist signaling pathway in glioblastoma (W. Yang et al., 2019).

KE4 => KE5:
Snail, Zeb, Twist activation leads to Epithelial-mesenchymal transition, induced

Biological Plausibility of the KE4 => KE5 is high.
Ratioinale: The transcription factors such as Snail, Zeb and Twist inhibit the CDH1 expression through their binding towards the promoter of CDH1, which leads to inhibition of cell adhesion and EMT (Diaz et al., 2014).

KE5 => AO:
Epithelial-mesenchymal transition, induced leads to Cancer Malignancy

Biological Plausibility of the KE5 => AO is high.
Ratioinale: The morphological and physiological changes associated with EMT are involved in invasiveness and drug resistance (Shibue & Weinberg, 2017). The EMT-activated particular carcinoma cells in primary tumors invade the surrounding stroma (Shibue & Weinberg, 2017). The EMT –activated carcinoma cells interact with the surrounding extracellular matrix protein to induce focal adhesion kinase and extracellular signal-related kinase activation, followed by the transforming growth factor beta (TGFbeta) and canonical and/or noncanonical Wnt pathways to induce cancer stem cell (CSC) properties which contribute to the drug resistance (Shibue & Weinberg, 2017).
EMT-associated down-regulation of multiple apoptotic signaling pathways induce drug efflux and slow cell proliferation to induce the general resistance of carcinoma cells to anti-cancer drugs (Shibue & Weinberg, 2017).
Snail, an EMT-related transcription factor, induces the expression of the AXL receptor tyrosine kinase, which enables the cancer cells to survive by the activation of AXL signaling triggered by the binding of its ligand growth arrest-specific protein 6 (GAS6)(Shibue & Weinberg, 2017).
The EMT-activated cells evade the lethal effect of cytotoxic T cells, which include the elevated expression of programmed cell death 1 ligand (PD-L1) which binds to the programmed cell death protein 1 (PD-1) inhibitory immune-checkpoint receptor on the cell surface of cytotoxic T cells (Shibue & Weinberg, 2017).

2. Support for essentiality of KEs

KE5: Epithelial-mesenchymal transition

Essentiality of the KE5 is moderate.
Rationale for Essentiality of KEs in the AOP:

3. Empirical support for KERs

MIE => KE1:
Wnt ligand stimulation leads to Frizzled activation

Empirical Support of the MIE => KE1 is high.
Ratioinale: Dishevelled (DVL), a positive regulator of Wnt signaling, form the complex with FZD and lead to trigger the Wnt signaling together with Wnt coreceptor low-density lipoprotein (LDL) receptor-related protein 6 (LRP6) (Clevers & Nusse, 2012; X. Jiang et al., 2015).
Wnt binds to FZD and activate the Wnt signaling (Clevers & Nusse, 2012; Janda et al., 2012; Nile et al., 2017). Wnt binding towards FZD induce the formation of the protein complex with LRP5/6 and DVL, leading to the down-stream signaling activation (Clevers & Nusse, 2012).

KE1 => KE2:
Frizzled activation leads to GSK3beta inactivation

Empirical Support of the KE1 => KE2 is high.
Ratioinale: ・ The ligand-stimulated FZD induces the regulation of the phosphorylation by GSK3beta to inactivate GSK3beta which phosphorylates beta-catenin (Clevers & Nusse, 2012).
・ The binding of Axin to the cytoplasmic tail of LRP5 bound to Wnt is crucial for the Wnt signaling pathway regulation and GSK3 beta inactivation in Wnt/beta-catenin signaling (Mao et al., 2001).
・ Axin-LRP6 binding is the important step for the phosphorylation of the LRP5/6 tail by GSK3 beta which phosphorylates the serine in the PPPSP motif found in beta-catenin, Axin, APC (He, Semenov, Tamai, & Zeng, 2004; Tamai et al., 2004; Zeng et al., 2005).
・ Wnt3a induces phosphorylation of LRP6 leading to beta-catenin activation, while beta-catenin is not activated in FZD-inhibited cells (Zeng et al., 2008).

KE2 => KE3:
GSK3beta inactivation leads to β-catenin activation

Empirical Support of the KE2 => KE3 is high.
Ratioinale: GSK3beta inactivation induces the beta-catenin stabilization (Pez et al., 2013).
GSK3beta inactivation induces beta-catenin translocation into the nucleus (MacDonald et al., 2009; Pez et al., 2013).
WNT2 knockdown induces the accumulation of GSK3beta in the cytoplasm and reduced the expression of beta-catenin, which WNT2 overexpression reduces the expression of GSK3beta in the cytoplasm and induces beta-catenin translocation into the nucleus (Wang, Li, & Kidder, 2010).
WNT2 siRNA knockdown increases the GSK3beta expression and decreases beta-catenin expression, and WNT2 overexpression reduces the GSK3beta and increases beta-catenin in granulosa cells in Mus musculus (Wang et al., 2010).

KE3 => KE4:
β-catenin activation leads to Snail, Zeb, Twist activation

Empirical Support of the KE3 => KE4 is high.
Ratioinale: The inhibition of c-MET, which is overexpressed in diffuse-type gastric cancer, induced increase in phosphorylated beta-catenin, decrease in beta-catenin and Snail (Sohn et al., 2019).
The garcinol, that has anti-cancer effect, increases phosphorylated beta-catenin, decreases beta-catenin and ZEB1/ZEB2, and inhibit EMT (Ahmad et al., 2012).
The inhibition of sortilin by AF38469 (a sortilin inhibitor) or small interference RNA (siRNA) results in decrease in beta-catenin and Twist expression in human glioblastoma cells (W. Yang et al., 2019).

KE4 => KE5:
Snail, Zeb, Twist activation leads to Epithelial-mesenchymal transition, induced

Empirical Support of the KE4 => KE5 is high.
Ratioinale: Histone deacetylase inhibitors affect on EMT-related transcription factors including ZEB, Twist and Snail (Wawruszak et al., 2019).
Snail and Zeb induces EMT and suppress E-cadherin (CDH1) (Batlle et al., 2000; Diaz et al., 2014; Peinado, Olmeda, & Cano, 2007).

KE5 => AO:
Epithelial-mesenchymal transition, induced leads to Cancer Malignancy

Empirical Support of the KE5 => AO is high.
Ratioinale: Slug/Snai2, a ces-1-related zinc finger transcription factor gene, confers resistance to p53-mediated apoptosis of hematopoietic progenitors by repressing PUMA (also known as BBC3, encoding Bcl-2-binding component 3) (Inukai et al., 1999; Shibue & Weinberg, 2017; W.-S. Wu et al., 2005).
EMT activation induces the expression of multiple members of the ATP-binding cassette (ABC) transporter family, which results in the resistant to doxorubicin (Saxena, Stephens, Pathak, & Rangarajan, 2011; Shibue & Weinberg, 2017) 
TGFbeta-1 induced EMT results in the acquisition of cancer stem cell (CSC) like properties (Pirozzi et al., 2011; Shibue & Weinberg, 2017).
Snail-induced EMT induces the cancer metastasis and resistance to dendritic cell-mediated immunotherapy (Kudo-Saito, Shirako, Takeuchi, & Kawakami, 2009).
Zinc finger E-box-binding homeobox (ZEB1)-induced EMT results in the relief of miR-200-mediated repression of programmed cell death 1 ligand (PD-L1) expression, a major inhibitory ligand for the programmed cell death protein (PD-1) immune-checkpoint protein on CD8+ cytotoxic T lymphocyte (CTL), subsequently the CD8+ T cell immunosuppression and metastasis (Chen et al., 2014).

Domain of Applicability


Homo sapiens

Essentiality of the Key Events


Wnt signaling is involved in cancer malignancy (Tanabe, 2018).

Key Events Frizzled activation, GSK3beta, beta-catenin activation and Zeb, Twist and Snail transcription factors are essential to this AOP.

Upon stimulation with Wnt ligand to Frizzled receptor, Wnt/beta-catenin signaling is activated. Wnt/beta-catenin consists of GSK3 beta inactivation, beta-catenin activation and up-regulation of transcription factors such as Zeb, Twist and Snail. The transcription factors Zeb, Twist and Snail relate to the activation of EMT-related genes. EMT is regulated with various gene networks (S. Tanabe, 2015).

Evidence Assessment


The Wnt signaling promotes EMT and cancer malignancy in colorectal cancer (Lazarova & Bordonaro, 2017). Although the potential pathways other than Wnt signaling exist in EMT induction and the mechanism underlaid cancer malignancy, Wnt signaling is one of the main pathways to induce EMT and cancer malignancy (Polakis, 2012).

Quantitative Understanding


Wnt signaling activates the CSCs to promote cancer malignancy (Reya & Clevers, 2005). The responses between each KEs from Frizzled activation and GSK3beta inactivation, beta-catenin activation, Snail, Zeb, Twist activation are dose-dependently related. The quantification of EMT and cancer malignancy would require the further investigation.

Considerations for Potential Applications of the AOP (optional)


AOP entitled “Wnt ligand stimulation and Wnt signaling activation lead to cancer malignancy” might be utilized for the development and risk assessment of anti-cancer drugs. EMT is involved in the acquisition of drug resistance, which is one of the critical features of cancer malignancy. The assessment of EMT would be the potential prediction of the adverse effects of anti-cancer drugs.



Aberle, H., Bauer, A., Stappert, J., Kispert, A., & Kemler, R. (1997). beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J, 16(13), 3797-3804. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9233789. doi:10.1093/emboj/16.13.3797

Ahmad, A., Sarkar, S. H., Bitar, B., Ali, S., Aboukameel, A., Sethi, S., . . . Sarkar, F. H. (2012). Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells. Mol Cancer Ther, 11(10), 2193-2201. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22821148. doi:10.1158/1535-7163.MCT-12-0232-T

Anastas, J. N., Kulikauskas, R. M., Tamir, T., Rizos, H., Long, G. V., von Euw, E. M., . . . Moon, R. T. (2014). WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. J Clin Invest, 124(7), 2877-2890. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24865425. doi:10.1172/JCI70156

Asem, M. S., Buechler, S., Wates, R. B., Miller, D. L., & Stack, M. S. (2016). Wnt5a Signaling in Cancer. Cancers (Basel), 8(9). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27571105. doi:10.3390/cancers8090079

Banziger, C., Soldini, D., Schutt, C., Zipperlen, P., Hausmann, G., & Basler, K. (2006). Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell, 125(3), 509-522. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16678095. doi:10.1016/j.cell.2006.02.049

Bartscherer, K., Pelte, N., Ingelfinger, D., & Boutros, M. (2006). Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell, 125(3), 523-533. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16678096. doi:10.1016/j.cell.2006.04.009

Batlle, E., Sancho, E., Francí, C., Domínguez, D., Monfar, M., Baulida, J., & García de Herreros, A. (2000). The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2(2), 84-89. Retrieved from https://doi.org/10.1038/35000034. doi:10.1038/35000034

Bhanot, P., Brink, M., Samos, C. H., Hsieh, J.-C., Wang, Y., Macke, J. P., . . . Nusse, R. (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 382, 225. Retrieved from https://doi.org/10.1038/382225a0. doi:10.1038/382225a0

Bovolenta, P., Esteve, P., Ruiz, J. M., Cisneros, E., & Lopez-Rios, J. (2008). Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci, 121(Pt 6), 737-746. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18322270. doi:10.1242/jcs.026096

Cao, T. T., Xiang, D., Liu, B. L., Huang, T. X., Tan, B. B., Zeng, C. M., . . . Fu, L. (2017). FZD7 is a novel prognostic marker and promotes tumor metastasis via WNT and EMT signaling pathways in esophageal squamous cell carcinoma. Oncotarget, 8(39), 65957-65968. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29029485. doi:10.18632/oncotarget.19586

Chen, L., Gibbons, D. L., Goswami, S., Cortez, M. A., Ahn, Y.-H., Byers, L. A., . . . Qin, F. X.-F. (2014). Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nature communications, 5, 5241-5241. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25348003

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4212319/. doi:10.1038/ncomms6241

Ching, W., & Nusse, R. (2006). A dedicated Wnt secretion factor. Cell, 125(3), 432-433. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16678089. doi:10.1016/j.cell.2006.04.018

Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127(3), 469-480. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17081971. doi:10.1016/j.cell.2006.10.018

Clevers, H., & Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell, 149(6), 1192-1205. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22682243. doi:10.1016/j.cell.2012.05.012

Colvin, H., Nishida, N., Konno, M., Haraguchi, N., Takahashi, H., Nishimura, J., . . . Ishii, H. (2016). Oncometabolite D-2-Hydroxyglurate Directly Induces Epithelial-Mesenchymal Transition and is Associated with Distant Metastasis in Colorectal Cancer. Sci Rep, 6, 36289. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27824159. doi:10.1038/srep36289

De, A. (2011). Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai), 43(10), 745-756. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21903638. doi:10.1093/abbs/gmr079

Diaz, V. M., Vinas-Castells, R., & Garcia de Herreros, A. (2014). Regulation of the protein stability of EMT transcription factors. Cell Adh Migr, 8(4), 418-428. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25482633. doi:10.4161/19336918.2014.969998

Dissanayake, S. K., Wade, M., Johnson, C. E., O'Connell, M. P., Leotlela, P. D., French, A. D., . . . Weeraratna, A. T. (2007). The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem, 282(23), 17259-17271. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17426020. doi:10.1074/jbc.M700075200

Du, B., & Shim, J. S. (2016). Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules, 21(7). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27455225. doi:10.3390/molecules21070965

Du, J., Zu, Y., Li, J., Du, S., Xu, Y., Zhang, L., . . . Yang, C. (2016). Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Sci Rep, 6, 20395. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26854061. doi:10.1038/srep20395

Ellwanger, K., Saito, H., Clement-Lacroix, P., Maltry, N., Niedermeyer, J., Lee, W. K., . . . Niehrs, C. (2008). Targeted disruption of the Wnt regulator Kremen induces limb defects and high bone density. Mol Cell Biol, 28(15), 4875-4882. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18505822. doi:10.1128/MCB.00222-08

Fang, C. X., Ma, C. M., Jiang, L., Wang, X. M., Zhang, N., Ma, J. N., . . . Zhao, Y. D. (2018). p38 MAPK is Crucial for Wnt1- and LiCl-Induced Epithelial Mesenchymal Transition. Curr Med Sci, 38(3), 473-481. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30074215. doi:10.1007/s11596-018-1903-4

Foulquier, S., Daskalopoulos, E. P., Lluri, G., Hermans, K. C. M., Deb, A., & Blankesteijn, W. M. (2018). WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev, 70(1), 68-141. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29247129. doi:10.1124/pr.117.013896

Goodman, R. M., Thombre, S., Firtina, Z., Gray, D., Betts, D., Roebuck, J., . . . Selva, E. M. (2006). Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development, 133(24), 4901-4911. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17108000. doi:10.1242/dev.02674

Guerra, F., Guaragnella, N., Arbini, A. A., Bucci, C., Giannattasio, S., & Moro, L. (2017). Mitochondrial Dysfunction: A Novel Potential Driver of Epithelial-to-Mesenchymal Transition in Cancer. Front Oncol, 7, 295. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29250487. doi:10.3389/fonc.2017.00295

Guerrero, F., Herencia, C., Almaden, Y., Martinez-Moreno, J. M., Montes de Oca, A., Rodriguez-Ortiz, M. E., . . . Munoz-Castaneda, J. R. (2014). TGF-beta prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/beta-catenin pathways. PLoS One, 9(2), e89179. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24586576. doi:10.1371/journal.pone.0089179

Hasegawa, K., Yasuda, S. Y., Teo, J. L., Nguyen, C., McMillan, M., Hsieh, C. L., . . . Kahn, M. (2012). Wnt signaling orchestration with a small molecule DYRK inhibitor provides long-term xeno-free human pluripotent cell expansion. Stem Cells Transl Med, 1(1), 18-28. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23197636. doi:10.5966/sctm.2011-0033

Hatsell, S., Rowlands, T., Hiremath, M., & Cowin, P. (2003). Beta-catenin and Tcfs in mammary development and cancer. J Mammary Gland Biol Neoplasia, 8(2), 145-158. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14635791.

He, X., Semenov, M., Tamai, K., & Zeng, X. (2004). LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: Arrows point the way. Development, 131(8), 1663. Retrieved from http://dev.biologists.org/content/131/8/1663.abstract. doi:10.1242/dev.01117

Hodge, D. Q., Cui, J., Gamble, M. J., & Guo, W. (2018). Histone Variant MacroH2A1 Plays an Isoform-Specific Role in Suppressing Epithelial-Mesenchymal Transition. Sci Rep, 8(1), 841. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29339820. doi:10.1038/s41598-018-19364-4

Hua, Y., Yang, Y., Li, Q., He, X., Zhu, W., Wang, J., & Gan, X. (2018). Oligomerization of Frizzled and LRP5/6 protein initiates intracellular signaling for the canonical WNT/beta-catenin pathway. J Biol Chem, 293(51), 19710-19724. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30361437. doi:10.1074/jbc.RA118.004434

Huang, J. Q., Wei, F. K., Xu, X. L., Ye, S. X., Song, J. W., Ding, P. K., . . . Gong, L. Y. (2019). SOX9 drives the epithelial-mesenchymal transition in non-small-cell lung cancer through the Wnt/beta-catenin pathway. J Transl Med, 17(1), 143. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31060551. doi:10.1186/s12967-019-1895-2

Inukai, T., Inoue, A., Kurosawa, H., Goi, K., Shinjyo, T., Ozawa, K., . . . Look, A. T. (1999). SLUG, a ces-1-Related Zinc Finger Transcription Factor Gene with Antiapoptotic Activity, Is a Downstream Target of the E2A-HLF Oncoprotein. Molecular Cell, 4(3), 343-352. Retrieved from http://www.sciencedirect.com/science/article/pii/S1097276500803366. doi:https://doi.org/10.1016/S1097-2765(00)80336-6

Janda, C. Y., Waghray, D., Levin, A. M., Thomas, C., & Garcia, K. C. (2012). Structural basis of Wnt recognition by Frizzled. Science, 337(6090), 59-64. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22653731. doi:10.1126/science.1222879

Jia, D., Park, J. H., Jung, K. H., Levine, H., & Kaipparettu, B. A. (2018). Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States. Cells, 7(3). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29534029. doi:10.3390/cells7030021

Jiang, J. (2017). CK1 in Developmental Signaling: Hedgehog and Wnt. Curr Top Dev Biol, 123, 303-329. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28236970. doi:10.1016/bs.ctdb.2016.09.002

Jiang, X., Charlat, O., Zamponi, R., Yang, Y., & Cong, F. (2015). Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell, 58(3), 522-533. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25891077. doi:10.1016/j.molcel.2015.03.015

Johnsen, J. I., Dyberg, C., Fransson, S., & Wickström, M. (2018). Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacological Research, 131, 164-176. Retrieved from http://www.sciencedirect.com/science/article/pii/S1043661817316699. doi:https://doi.org/10.1016/j.phrs.2018.02.023

Jordan, N. V., Prat, A., Abell, A. N., Zawistowski, J. S., Sciaky, N., Karginova, O. A., . . . Johnson, G. L. (2013). SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c controls epithelial-mesenchymal transition by inducing Wnt5a signaling. Mol Cell Biol, 33(15), 3011-3025. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23716599. doi:10.1128/MCB.01443-12

Kahn, M. (2014). Can we safely target the WNT pathway? Nat Rev Drug Discov, 13(7), 513-532. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24981364. doi:10.1038/nrd4233

Katoh, M. (2001). Molecular cloning and characterization of human WNT3. Int J Oncol, 19(5), 977-982. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11604997.

Kaufhold, S., & Bonavida, B. (2014). Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J Exp Clin Cancer Res, 33, 62. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25084828. doi:10.1186/s13046-014-0062-0

Kim, K. K., Kugler, M. C., Wolters, P. J., Robillard, L., Galvez, M. G., Brumwell, A. N., . . . Chapman, H. A. (2006). Alveolar epithelial cell mesenchymal transition develops <em>in vivo</em> during pulmonary fibrosis and is regulated by the extracellular matrix. Proceedings of the National Academy of Sciences, 103(35), 13180. Retrieved from http://www.pnas.org/content/103/35/13180.abstract. doi:10.1073/pnas.0605669103

Kremenevskaja, N., von Wasielewski, R., Rao, A. S., Schofl, C., Andersson, T., & Brabant, G. (2005). Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene, 24(13), 2144-2154. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15735754. doi:10.1038/sj.onc.1208370

Kudo-Saito, C., Shirako, H., Takeuchi, T., & Kawakami, Y. (2009). Cancer Metastasis Is Accelerated through Immunosuppression during Snail-Induced EMT of Cancer Cells. Cancer Cell, 15(3), 195-206. Retrieved from http://www.sciencedirect.com/science/article/pii/S1535610809000324. doi:https://doi.org/10.1016/j.ccr.2009.01.023

Kusserow, A., Pang, K., Sturm, C., Hrouda, M., Lentfer, J., Schmidt, H. A., . . . Holstein, T. W. (2005). Unexpected complexity of the Wnt gene family in a sea anemone. Nature, 433(7022), 156-160. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15650739. doi:10.1038/nature03158

Kwon, Y. J., Baek, H. S., Ye, D. J., Shin, S., Kim, D., & Chun, Y. J. (2016). CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/beta-Catenin Signaling via Sp1 Upregulation. PLoS One, 11(3), e0151598. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26981862. doi:10.1371/journal.pone.0151598

Lai, S. L., Chien, A. J., & Moon, R. T. (2009). Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis. Cell Res, 19(5), 532-545. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19365405. doi:10.1038/cr.2009.41

Laursen, K. B., Mielke, E., Iannaccone, P., & Fuchtbauer, E. M. (2007). Mechanism of transcriptional activation by the proto-oncogene Twist1. J Biol Chem, 282(48), 34623-34633. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17893140. doi:10.1074/jbc.M707085200

Lazarova, D., & Bordonaro, M. (2017). ZEB1 Mediates Drug Resistance and EMT in p300-Deficient CRC. Journal of Cancer, 8(8), 1453-1459. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28638460

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479251/. doi:10.7150/jca.18762

Li, C., & Balazsi, G. (2018). A landscape view on the interplay between EMT and cancer metastasis. NPJ Syst Biol Appl, 4, 34. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30155271. doi:10.1038/s41540-018-0068-x

Li, C. H., Liu, C. W., Tsai, C. H., Peng, Y. J., Yang, Y. H., Liao, P. L., . . . Kang, J. J. (2017). Cytoplasmic aryl hydrocarbon receptor regulates glycogen synthase kinase 3 beta, accelerates vimentin degradation, and suppresses epithelial-mesenchymal transition in non-small cell lung cancer cells. Arch Toxicol, 91(5), 2165-2178. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27752740. doi:10.1007/s00204-016-1870-0

Lian, X., Bao, X., Al-Ahmad, A., Liu, J., Wu, Y., Dong, W., . . . Palecek, S. P. (2014). Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports, 3(5), 804-816. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25418725. doi:10.1016/j.stemcr.2014.09.005

Lin, X., Chai, G., Wu, Y., Li, J., Chen, F., Liu, J., . . . Wang, H. (2019). RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun, 10(1), 2065. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/31061416. doi:10.1038/s41467-019-09865-9

Liu, C. C., Cai, D. L., Sun, F., Wu, Z. H., Yue, B., Zhao, S. L., . . . Yan, D. W. (2016). FERMT1 mediates epithelial–mesenchymal transition to promote colon cancer metastasis via modulation of β-catenin transcriptional activity. Oncogene, 36, 1779. Retrieved from https://doi.org/10.1038/onc.2016.339. doi:10.1038/onc.2016.339

https://www.nature.com/articles/onc2016339 - supplementary-information

Liu, J. X., Hu, B., Wang, Y., Gui, J. F., & Xiao, W. (2009). Zebrafish eaf1 and eaf2/u19 mediate effective convergence and extension movements through the maintenance of wnt11 and wnt5 expression. J Biol Chem, 284(24), 16679-16692. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19380582. doi:10.1074/jbc.M109.009654

MacDonald, B. T., Tamai, K., & He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 17(1), 9-26. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19619488. doi:10.1016/j.devcel.2009.06.016

Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., . . . Weinberg, R. A. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704-715. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18485877. doi:10.1016/j.cell.2008.03.027

Mao, J., Wang, J., Liu, B., Pan, W., Farr, G. H., Flynn, C., . . . Wu, D. (2001). Low-Density Lipoprotein Receptor-Related Protein-5 Binds to Axin and Regulates the Canonical Wnt Signaling Pathway. Molecular Cell, 7(4), 801-809. Retrieved from http://www.sciencedirect.com/science/article/pii/S1097276501002246. doi:https://doi.org/10.1016/S1097-2765(01)00224-6

Marjanovic, N. D., Weinberg, R. A., & Chaffer, C. L. (2013). Cell plasticity and heterogeneity in cancer. Clinical chemistry, 59(1), 168-179. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23220226

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220421/. doi:10.1373/clinchem.2012.184655

Mishra, P., Tang, W., Putluri, V., Dorsey, T. H., Jin, F., Wang, F., . . . Ambs, S. (2018). ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming. J Clin Invest, 128(1), 323-340. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29202474. doi:10.1172/JCI93815

Miyabayashi, T., Teo, J. L., Yamamoto, M., McMillan, M., Nguyen, C., & Kahn, M. (2007). Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci U S A, 104(13), 5668-5673. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17372190. doi:10.1073/pnas.0701331104

Mohammed, M. K., Shao, C., Wang, J., Wei, Q., Wang, X., Collier, Z., . . . Lee, M. J. (2016). Wnt/beta-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis, 3(1), 11-40. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27077077. doi:10.1016/j.gendis.2015.12.004

Mu, J., Hui, T., Shao, B., Li, L., Du, Z., Lu, L., . . . Xiang, T. (2017). Dickkopf-related protein 2 induces G0/G1 arrest and apoptosis through suppressing Wnt/beta-catenin signaling and is frequently methylated in breast cancer. Oncotarget, 8(24), 39443-39459. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28467796. doi:10.18632/oncotarget.17055

Naujok, O., Lentes, J., Diekmann, U., Davenport, C., & Lenzen, S. (2014). Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Res Notes, 7, 273. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24779365. doi:10.1186/1756-0500-7-273

Nile, A. H., Mukund, S., Stanger, K., Wang, W., & Hannoush, R. N. (2017). Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding. Proc Natl Acad Sci U S A, 114(16), 4147-4152. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28377511. doi:10.1073/pnas.1618293114

Nusse, R., & Clevers, H. (2017). Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 169(6), 985-999. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28575679. doi:10.1016/j.cell.2017.05.016

Pearlman, R. L., Montes de Oca, M. K., Pal, H. C., & Afaq, F. (2017). Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Lett, 391, 125-140. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28131904. doi:10.1016/j.canlet.2017.01.029

Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer, 7(6), 415-428. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17508028. doi:10.1038/nrc2131

Pez, F., Lopez, A., Kim, M., Wands, J. R., Caron de Fromentel, C., & Merle, P. (2013). Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J Hepatol, 59(5), 1107-1117. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23835194. doi:10.1016/j.jhep.2013.07.001

Piao, S., Lee, S. H., Kim, H., Yum, S., Stamos, J. L., Xu, Y., . . . Ha, N. C. (2008). Direct inhibition of GSK3beta by the phosphorylated cytoplasmic domain of LRP6 in Wnt/beta-catenin signaling. PLoS One, 3(12), e4046. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19107203. doi:10.1371/journal.pone.0004046

Pirozzi, G., Tirino, V., Camerlingo, R., Franco, R., La Rocca, A., Liguori, E., . . . Rocco, G. (2011). Epithelial to mesenchymal transition by TGFβ-1 induction increases stemness characteristics in primary non small cell lung cancer cell line. PLoS One, 6(6), e21548-e21548. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21738704

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128060/. doi:10.1371/journal.pone.0021548

Polakis, P. (2012). Wnt signaling in cancer. Cold Spring Harb Perspect Biol, 4(5). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22438566. doi:10.1101/cshperspect.a008052

Qualtrough, D., Rees, P., Speight, B., Williams, A. C., & Paraskeva, C. (2015). The Hedgehog Inhibitor Cyclopamine Reduces beta-Catenin-Tcf Transcriptional Activity, Induces E-Cadherin Expression, and Reduces Invasion in Colorectal Cancer Cells. Cancers (Basel), 7(3), 1885-1899. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26393651. doi:10.3390/cancers7030867

Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843-850. Retrieved from https://doi.org/10.1038/nature03319. doi:10.1038/nature03319

Saito-Diaz, K., Chen, T. W., Wang, X., Thorne, C. A., Wallace, H. A., Page-McCaw, A., & Lee, E. (2013). The way Wnt works: components and mechanism. Growth Factors, 31(1), 1-31. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23256519. doi:10.3109/08977194.2012.752737

Saxena, M., Stephens, M. A., Pathak, H., & Rangarajan, A. (2011). Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell death & disease, 2(7), e179-e179. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21734725

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199722/. doi:10.1038/cddis.2011.61

Schwab, R. H. M., Amin, N., Flanagan, D. J., Johanson, T. M., Phesse, T. J., & Vincan, E. (2018). Wnt is necessary for mesenchymal to epithelial transition in colorectal cancer cells. Dev Dyn, 247(3), 521-530. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28560804. doi:10.1002/dvdy.24527

Sciacovelli, M., & Frezza, C. (2017). Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J, 284(19), 3132-3144. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28444969. doi:10.1111/febs.14090

Semenov, M. V., Zhang, X., & He, X. (2008). DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J Biol Chem, 283(31), 21427-21432. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18505732. doi:10.1074/jbc.M800014200

Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol, 14(10), 611-629. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28397828. doi:10.1038/nrclinonc.2017.44

Sineva, G. S., & Pospelov, V. A. (2010). Inhibition of GSK3beta enhances both adhesive and signalling activities of beta-catenin in mouse embryonic stem cells. Biol Cell, 102(10), 549-560. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20626347. doi:10.1042/BC20100016

Smith, B. N., & Bhowmick, N. A. (2016). Role of EMT in Metastasis and Therapy Resistance. J Clin Med, 5(2). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26828526. doi:10.3390/jcm5020017

Sohn, S. H., Kim, B., Sul, H. J., Kim, Y. J., Kim, H. S., Kim, H., . . . Zang, D. Y. (2019). INC280 inhibits Wnt/beta-catenin and EMT signaling pathways and its induce apoptosis in diffuse gastric cancer positive for c-MET amplification. BMC Res Notes, 12(1), 125. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30871613. doi:10.1186/s13104-019-4163-x

Stump, B., Shrestha, S., Lamattina, A. M., Louis, P. H., Cho, W., Perrella, M. A., . . . El-Chemaly, S. (2019). Glycogen synthase kinase 3-beta inhibition induces lymphangiogenesis through beta-catenin-dependent and mTOR-independent pathways. PLoS One, 14(4), e0213831. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30964887. doi:10.1371/journal.pone.0213831

Suarez-Carmona, M., Lesage, J., Cataldo, D., & Gilles, C. (2017). EMT and inflammation: inseparable actors of cancer progression. Mol Oncol, 11(7), 805-823. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28599100. doi:10.1002/1878-0261.12095

Sun, J., Yang, X., Zhang, R., Liu, S., Gan, X., Xi, X., . . . Sun, Y. (2017). GOLPH3 induces epithelial-mesenchymal transition via Wnt/beta-catenin signaling pathway in epithelial ovarian cancer. Cancer Med, 6(4), 834-844. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28332316. doi:10.1002/cam4.1040

Taelman, V. F., Dobrowolski, R., Plouhinec, J. L., Fuentealba, L. C., Vorwald, P. P., Gumper, I., . . . De Robertis, E. M. (2010). Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell, 143(7), 1136-1148. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21183076. doi:10.1016/j.cell.2010.11.034

Tamai, K., Zeng, X., Liu, C., Zhang, X., Harada, Y., Chang, Z., & He, X. (2004). A Mechanism for Wnt Coreceptor Activation. Molecular Cell, 13(1), 149-156. Retrieved from http://www.sciencedirect.com/science/article/pii/S1097276503004842. doi:https://doi.org/10.1016/S1097-2765(03)00484-2

Tanabe, S. (2013). Perspectives of gene combinations in phenotype presentation. World journal of stem cells, 5(3), 61-67. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23951387

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744131/. doi:10.4252/wjsc.v5.i3.61

Tanabe, S. (2014). Role of mesenchymal stem cells in cell life and their signaling. World journal of stem cells, 6(1), 24-32. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24567785

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927011/. doi:10.4252/wjsc.v6.i1.24

Tanabe, S. (2015a). Origin of cells and network information. World journal of stem cells, 7(3), 535-540. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25914760

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404388/. doi:10.4252/wjsc.v7.i3.535

Tanabe, S. (2015). Overview of gene regulation in stem cell network to identify therapeutic targets utilizing genome databases. Insights Stem Cells, 1(1).

Tanabe, S. (2015b). Signaling involved in stem cell reprogramming and differentiation. World journal of stem cells, 7(7), 992-998. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26328015

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550631/. doi:10.4252/wjsc.v7.i7.992

Tanabe, S. (2017). Molecular markers and networks for cancer and stem cells. J Embryol Stem Cell Res, 1(1).

Tanabe, S. (2018). Wnt Signaling and Epithelial-Mesenchymal Transition Network in Cancer. Res J Oncol, 2(2).

Tanabe, S., Aoyagi, K., Yokozaki, H., & Sasaki, H. (2014). Gene expression signatures for identifying diffuse-type gastric cancer associated with epithelial-mesenchymal transition. Int J Oncol, 44(6), 1955-1970. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24728500. doi:10.3892/ijo.2014.2387

Tanabe, S., Aoyagi, K., Yokozaki, H., & Sasaki, H. (2015). Regulated genes in mesenchymal stem cells and gastric cancer. World journal of stem cells, 7(1), 208-222. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25621121

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300932/. doi:10.4252/wjsc.v7.i1.208

Tanabe, S., Kawabata, T., Aoyagi, K., Yokozaki, H., & Sasaki, H. (2016). Gene expression and pathway analysis of CTNNB1 in cancer and stem cells. World J Stem Cells, 8(11), 384-395. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27928465. doi:10.4252/wjsc.v8.i11.384

Tanabe, S., Komatsu, M., Kazuhiko, A., Yokozaki, H., & Sasaki, H. (2015). Implications of epithelial-mesenchymal transition in gastric cancer. Translational Gastrointestinal Cancer, 4(4), 258-264. Retrieved from http://tgc.amegroups.com/article/view/6996.

Tang, Y. Y., Sheng, S. Y., Lu, C. G., Zhang, Y. Q., Zou, J. Y., Lei, Y. Y., . . . Hong, H. (2018). Effects of Glycogen Synthase Kinase-3beta Inhibitor TWS119 on Proliferation and Cytokine Production of TILs From Human Lung Cancer. J Immunother, 41(7), 319-328. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29877972. doi:10.1097/CJI.0000000000000234

Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871-890. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19945376. doi:10.1016/j.cell.2009.11.007

Wang, B., Tang, Z., Gong, H., Zhu, L., & Liu, X. (2017). Wnt5a promotes epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer. Biosci Rep, 37(6). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29054966. doi:10.1042/BSR20171092

Wang, H. X., Li, T. Y., & Kidder, G. M. (2010). WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin. Biol Reprod, 82(5), 865-875. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20107203. doi:10.1095/biolreprod.109.080903

Wawruszak, A., Kalafut, J., Okon, E., Czapinski, J., Halasa, M., Przybyszewska, A., . . . Stepulak, A. (2019). Histone Deacetylase Inhibitors and Phenotypical Transformation of Cancer Cells. Cancers (Basel), 11(2). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30691229. doi:10.3390/cancers11020148

Wendt, M. K., Smith, J. A., & Schiemann, W. P. (2010). Transforming growth factor-beta-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene, 29(49), 6485-6498. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20802523. doi:10.1038/onc.2010.377

Willert, K., & Nusse, R. (2012). Wnt proteins. Cold Spring Harb Perspect Biol, 4(9), a007864. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22952392. doi:10.1101/cshperspect.a007864

Willis, B. C., Liebler, J. M., Luby-Phelps, K., Nicholson, A. G., Crandall, E. D., du Bois, R. M., & Borok, Z. (2005). Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol, 166(5), 1321-1332. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15855634.

Wu, W.-S., Heinrichs, S., Xu, D., Garrison, S. P., Zambetti, G. P., Adams, J. M., & Look, A. T. (2005). Slug Antagonizes p53-Mediated Apoptosis of Hematopoietic Progenitors by Repressing puma. Cell, 123(4), 641-653. Retrieved from http://www.sciencedirect.com/science/article/pii/S0092867405010317. doi:https://doi.org/10.1016/j.cell.2005.09.029

Wu, Y., Liu, F., Liu, Y., Liu, X., Ai, Z., Guo, Z., & Zhang, Y. (2015). GSK3 inhibitors CHIR99021 and 6-bromoindirubin-3'-oxime inhibit microRNA maturation in mouse embryonic stem cells. Sci Rep, 5, 8666. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25727520. doi:10.1038/srep08666

Yan, T.-f., Wu, M.-j., Xiao, B., Hu, Q., Fan, Y.-H., & Zhu, X.-G. (2018). Knockdown of HOXC6 inhibits glioma cell proliferation and induces cell cycle arrest by targeting WIF-1 in vitro and vivo. Pathology - Research and Practice, 214(11), 1818-1824. Retrieved from http://www.sciencedirect.com/science/article/pii/S0344033818308380. doi:https://doi.org/10.1016/j.prp.2018.09.001

Yang, W., Wu, P. F., Ma, J. X., Liao, M. J., Wang, X. H., Xu, L. S., . . . Yi, L. (2019). Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3beta/beta-catenin/twist pathway. Cell Death Dis, 10(3), 208. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30814514. doi:10.1038/s41419-019-1449-9

Yang, Y. M., Gupta, S. K., Kim, K. J., Powers, B. E., Cerqueira, A., Wainger, B. J., . . . Rubin, L. L. (2013). A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell, 12(6), 713-726. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23602540. doi:10.1016/j.stem.2013.04.003

Yao, Z., Zhou, G., Wang, X. S., Brown, A., Diener, K., Gan, H., & Tan, T. H. (1999). A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway. J Biol Chem, 274(4), 2118-2125. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9890973.

Ying, J., Li, H., Yu, J., Ng, K. M., Poon, F. F., Wong, S. C., . . . Tao, Q. (2008). WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/beta-catenin signaling, and is frequently methylated in colorectal cancer. Clin Cancer Res, 14(1), 55-61. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18172252. doi:10.1158/1078-0432.CCR-07-1644

Zeisberg, M., & Neilson, E. G. (2009). Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 119(6), 1429-1437. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19487819. doi:10.1172/JCI36183

Zeng, H., Lu, B., Zamponi, R., Yang, Z., Wetzel, K., Loureiro, J., . . . Cong, F. (2018). mTORC1 signaling suppresses Wnt/beta-catenin signaling through DVL-dependent regulation of Wnt receptor FZD level. Proc Natl Acad Sci U S A, 115(44), E10362-E10369. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30297426. doi:10.1073/pnas.1808575115

Zeng, X., Huang, H., Tamai, K., Zhang, X., Harada, Y., Yokota, C., . . . He, X. (2008). Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development, 135(2), 367. Retrieved from http://dev.biologists.org/content/135/2/367.abstract. doi:10.1242/dev.013540

Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., . . . He, X. (2005). A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature, 438(7069), 873-877. Retrieved from https://doi.org/10.1038/nature04185. doi:10.1038/nature04185

Zhang, J., Tian, X. J., & Xing, J. (2016). Signal Transduction Pathways of EMT Induced by TGF-beta, SHH, and WNT and Their Crosstalks. J Clin Med, 5(4). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27043642. doi:10.3390/jcm5040041

Zhang, J., Zhou, B., Liu, Y., Chen, K., Bao, P., Wang, Y., . . . Li, Y. (2014). Wnt inhibitory factor-1 functions as a tumor suppressor through modulating Wnt/β-catenin signaling in neuroblastoma. Cancer Letters, 348(1), 12-19. Retrieved from http://www.sciencedirect.com/science/article/pii/S0304383514001025. doi:https://doi.org/10.1016/j.canlet.2014.02.011

Zhang, P., Sun, Y., & Ma, L. (2015). ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle, 14(4), 481-487. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25607528. doi:10.1080/15384101.2015.1006048

Zhou, Y., Huang, Y., Cao, X., Xu, J., Zhang, L., Wang, J., . . . Zheng, M. (2016). WNT2 Promotes Cervical Carcinoma Metastasis and Induction of Epithelial-Mesenchymal Transition. PLoS One, 11(8), e0160414. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27513465. doi:10.1371/journal.pone.0160414

Ziv, E., Yarmohammadi, H., Boas, F. E., Petre, E. N., Brown, K. T., Solomon, S. B., . . . Erinjeri, J. P. (2017). Gene Signature Associated with Upregulation of the Wnt/beta-Catenin Signaling Pathway Predicts Tumor Response to Transarterial Embolization. J Vasc Interv Radiol, 28(3), 349-355 e341. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28126478. doi:10.1016/j.jvir.2016.11.004