Event: 227

Key Event Title


Activation, PPARα

Short name


Activation, PPARα

Key Event Component


Process Object Action
peroxisome proliferator activated receptor signaling pathway peroxisome proliferator-activated receptor alpha increased

Key Event Overview

AOPs Including This Key Event




Level of Biological Organization


Biological Organization

Cell term


Cell term
eukaryotic cell

Organ term


Taxonomic Applicability


Term Scientific Term Evidence Link
rat Rattus norvegicus Strong NCBI
mouse Mus musculus Strong NCBI
human Homo sapiens Strong NCBI

Life Stages


Sex Applicability


How This Key Event Works


Biological state

The Peroxisome Proliferator Activated receptor α (PPARα) belongs to the Peroxisome Proliferator Activated receptors (PPARs; NR1C) steroid/thyroid/retinoid receptor superfamily of transcription factors.

Biological compartments

PPARα is expressed in high levels in tissues that perform significant catabolism of fatty acids (FAs), such as brown adipose tissue, liver, heart, kidney, and intestine (Michalik et al. 2006). The receptor is present also in skeletal muscle, intestine, pancreas, lung, placenta and testes (Mukherjee et al. 1997), (Schultz et al. 1999).

General role in biology

PPARs are activated by fatty acids and their derivatives; they are sensors of dietary lipids and are involved in lipid and carbohydrate metabolism, immune response and peroxisome proliferation (Wahli and Desvergne 1999), (Evans, Barish, & Wang, 2004). PAPRα is a also a target of hypothalamic hormone signalling and was found to play a role in embryonic development (Yessoufou and Wahli 2010).

Fibrates, activators of PPARα, are commonly used to treat hypertriglyceridemia and other dyslipidemic states as they have been shown to decrease circulating lipid levels (Lefebvre et al. 2006).

How It Is Measured or Detected


Binding of ligands to PPARα is measured using binding assays in vitro and in silico, whereas the information about functional activation is derived from transactivation assays (e.g. transactivation assay with reporter gene) that demonstrate functional activation of a nuclear receptor by a specific compound. Binding of agonists within the ligand-binding site of PPARs causes a conformational change of nuclear receptor that promotes binding to transcriptional co-activators. Conversely, binding of antagonists results in a conformation that favours the binding of co-repressors (Yu and Reddy 2007), (Viswakarma et al. 2010). Transactivation assays are performed using transient or stably transfected cells with the PPARα expression plasmid and a reporter plasmid, respectively. There are also other methods that have been used to measure PPARα activity, such as the Electrophoretic Mobility Shift Assay (EMSA) or commercially available PPARα transcription factor assay kits, see Table 1. The transactivation (stable transfection) assay provides the most applicable OECD Level 2 assay (i.e. In vitro assays providing mechanistic data) aimed at identifying the initiating event leading to an adverse outcome (LeBlanc, Norris, and Kloas 2011). Currently no internationally validated assays for regulatory purposes are available.

Key event PPARα activation

What is measured?

Ligand Binding
Transcriptional activity

Method/test category

molecular modelling
binding assay
transactivation reporter gene assay
transcription factor assay



molecular modelling; docking

Scintillation proximity binding assay

luciferase reporter gene assay

PPARα (mouse/rat) Reporter Assay Kit

Electrophoretic Mobility Shift Assay (EMSA)

Test environment

In silico
In vitro
In vitro
In vitro, ex vivo

Test principle

Computational simulation of a candidate ligand binding to a receptor, Predicts the strength of association or binding affinity.

Direct binding indicating the mode of action for PPARα

Quantifying changes in luciferase expression in the treated reporter cells provides a sensitive surrogate measure of the changes in PPAR functional activity.

PPARα once activated by a ligand, the receptor binds to a promoter element in the gene for target gene and activates its transcription. The DNA-bound (activated) PPAR is measured.

Test outcome

A binding interaction between a small molecule ligand and an enzyme protein may result in activation or inhibition of the enzyme. If the protein is a receptor, ligand binding may result in agonism or antagonism of the normal activity of the receptor.

Assesses the ability of compounds to bind to PPARα. Identifies the modulators of PPARα.

The changes in activity of reporter gene levels functionally linked to a PPAR-responsive element/promoter gives information about the nature of the PPAR activation.

Protein: DNA binding, DNA binding activity  

Test background

Predicts the preferred orientation of one molecule to a second when bound to each other to form a stable complex. Knowledge of the preferred orientation in turn may be used to predict the strength of association or binding affinity between two molecules using, for example, scoring functions.

This assay determines whether compounds interact directly with PPARs. The type of beads that are involved in the SPA are microscopic in size and within the beads, there is a scintillant which emits light when it is stimulated. Stimulation occurs when radio-labelled molecules interact and bind to the surface of the bead and trigger the bead to emit light.

PPARα/γ COS-1cell transactivation assay (transient transfection with human or mouse PPARα/γ expression plasmid and pHD(x3)-Luc reporter plasmid

(PPRE)3- luciferase reporter construct C2C12

Proprietary rodent cell line expressing the mouse/rat PPARα

Transcriptional activity of PPARα can be assessed using commercially available kits like e.g. PPAR-α transcription factor assay kit.

Gene regulation and determining protein: DNA interactions are detected by the EMSA. EMSA can be used qualitatively to identify sequence-specific DNA-binding proteins (such as transcription factors) in crude lysates and, in conjunction with mutagenesis, to identify the important binding sequences within a given gene upstream regulatory region. EMSA can also be utilized quantitatively to measure thermodynamic and kinetic parameters.

Assay type




Application domain

Virtual screening

In vitro screening

In vitro Screening, functional studies activity (reported use: agonist)


In vitro Screening functional activity (antagonist/agonist)




(Feige et al. 2007), (Kaya et al. 2006)
(Lapinskas et al. 2005), (Wu, Gao, and Wang 2005)
(Maloney and Waxman 1999)
(Feige et al. 2007)

Table 1 Summary of the chosen methods to measure the PPARα activation.

Evidence Supporting Taxonomic Applicability


PPARα has been identified in frog (Xenopus laevis), mouse, human, rat, fish, hamster and chicken (reviewed in (Wahli and Desvergne 1999)).

Evidence for Perturbation by Stressor

Overview for Molecular Initiating Event


Fibrates are ligands of PPARα (Staels et al. 1998).


MHEP (CAS 4376-20-9) directly binds in vitro to PPARα (Lapinskas et al. 2005) and activates this receptor in transactivation assays PPARα (Lapinskas et al. 2005), (Maloney and Waxman 1999), (Hurst and Waxman 2003), (Bility et al. 2004), (Lampen, Zimnik, and Nau 2003), (Venkata et al. 2006) ]. DEHP (CAS 117-81-7) has not been found to bind and activate PPARα (Lapinskas et al. 2005), (Maloney and Waxman 1999). However, the recent studies shown activation of PPARα (ToxCastTM Data).

Notably, PPARα are responsive to DEHP in vitro as they are translocated to the nucleus (in primary Sertoli cells) (Dufour et al. 2003), (Bhattacharya et al. 2005). Expression of PPARα [mRNA and protein] has been reported to be also modulated by phthtalates: (to be up-regulated in vivo upon DEHP treatment (Xu et al. 2010) and down-regulated by Diisobutyl phthalate (DiBP) (Boberg et al. 2008)).

Perfluorooctanoic Acid (PFOA) is known to activate PPARα (Vanden Heuvel et al. 2006).


Tributyltin (TBT) activates all three heterodimers of PPAR with RXR, primarily through its interaction with RXR (le Maire et al. 2009)



Bhattacharya, Nandini, Jannette M Dufour, My-Nuong Vo, Janice Okita, Richard Okita, and Kwan Hee Kim. 2005. “Differential Effects of Phthalates on the Testis and the Liver.” Biology of Reproduction 72 (3) (March): 745–54. doi:10.1095/biolreprod.104.031583.

Bility, Moses T, Jerry T Thompson, Richard H McKee, Raymond M David, John H Butala, John P Vanden Heuvel, and Jeffrey M Peters. 2004. “Activation of Mouse and Human Peroxisome Proliferator-Activated Receptors (PPARs) by Phthalate Monoesters.” Toxicological Sciences : An Official Journal of the Society of Toxicology 82 (1) (November): 170–82. doi:10.1093/toxsci/kfh253.

Dufour, Jannette M, My-Nuong Vo, Nandini Bhattacharya, Janice Okita, Richard Okita, and Kwan Hee Kim. 2003. “Peroxisome Proliferators Disrupt Retinoic Acid Receptor Alpha Signaling in the Testis.” Biology of Reproduction 68 (4) (April): 1215–24. doi:10.1095/biolreprod.102.010488.

Feige, Jérôme N, Laurent Gelman, Daniel Rossi, Vincent Zoete, Raphaël Métivier, Cicerone Tudor, Silvia I Anghel, et al. 2007. “The Endocrine Disruptor Monoethyl-Hexyl-Phthalate Is a Selective Peroxisome Proliferator-Activated Receptor Gamma Modulator That Promotes Adipogenesis.” The Journal of Biological Chemistry 282 (26) (June 29): 19152–66. doi:10.1074/jbc.M702724200.

Hurst, Christopher H, and David J Waxman. 2003. “Activation of PPARalpha and PPARgamma by Environmental Phthalate Monoesters.” Toxicological Sciences : An Official Journal of the Society of Toxicology 74 (2) (August): 297–308. doi:10.1093/toxsci/kfg145.

Kaya, Taner, Scott C Mohr, David J Waxman, and Sandor Vajda. 2006. “Computational Screening of Phthalate Monoesters for Binding to PPARgamma.” Chemical Research in Toxicology 19 (8) (August): 999–1009. doi:10.1021/tx050301s.

Lampen, Alfonso, Susan Zimnik, and Heinz Nau. 2003. “Teratogenic Phthalate Esters and Metabolites Activate the Nuclear Receptors PPARs and Induce Differentiation of F9 Cells.” Toxicology and Applied Pharmacology 188 (1) (April): 14–23. doi:10.1016/S0041-008X(03)00014-0.

Lapinskas, Paula J., Sherri Brown, Lisa M. Leesnitzer, Steven Blanchard, Cyndi Swanson, Russell C. Cattley, and J. Christopher Corton. 2005. “Role of PPARα in Mediating the Effects of Phthalates and Metabolites in the Liver.” Toxicology 207 (1): 149–163.

Le Maire, Albane, Marina Grimaldi, Dominique Roecklin, Sonia Dagnino, Valérie Vivat-Hannah, Patrick Balaguer, and William Bourguet. 2009. “Activation of RXR-PPAR Heterodimers by Organotin Environmental Endocrine Disruptors.” EMBO Reports 10 (4) (April): 367–73. doi:10.1038/embor.2009.8.

LeBlanc, GA, DO Norris, and W Kloas. 2011. “Detailed Review Paper State of the Science on Novel In Vitro and In Vivo Screening and Testing Methods and Endpoints for Evaluating Endocrine Disruptors” (178).

Lefebvre, Philippe, Giulia Chinetti, Jean-Charles Fruchart, and Bart Staels. 2006. “Sorting out the Roles of PPAR Alpha in Energy Metabolism and Vascular Homeostasis.” The Journal of Clinical Investigation 116 (3) (March): 571–80. doi:10.1172/JCI27989.

Maloney, Erin K., and David J. Waxman. 1999. “Trans-Activation of PPARα and PPARγ by Structurally Diverse Environmental Chemicals.” Toxicology and Applied Pharmacology 161 (2): 209–218.

Michalik, Liliane, Johan Auwerx, Joel P Berger, V Krishna Chatterjee, Christopher K Glass, Frank J Gonzalez, Paul A Grimaldi, et al. 2006. “International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors.” Pharmacological Reviews 58 (4) (December): 726–41. doi:10.1124/pr.58.4.5.

Mukherjee, R, L Jow, G E Croston, and J R Paterniti. 1997. “Identification, Characterization, and Tissue Distribution of Human Peroxisome Proliferator-Activated Receptor (PPAR) Isoforms PPARgamma2 versus PPARgamma1 and Activation with Retinoid X Receptor Agonists and Antagonists.” The Journal of Biological Chemistry 272 (12) (March 21): 8071–6.

Schultz, R, W Yan, J Toppari, A Völkl, J A Gustafsson, and M Pelto-Huikko. 1999. “Expression of Peroxisome Proliferator-Activated Receptor Alpha Messenger Ribonucleic Acid and Protein in Human and Rat Testis.” Endocrinology 140 (7) (July): 2968–75. doi:10.1210/endo.140.7.6858.

Staels, B., J. Dallongeville, J. Auwerx, K. Schoonjans, E. Leitersdorf, and J.-C. Fruchart. 1998. “Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism.” Circulation 98 (19) (November 10): 2088–2093. doi:10.1161/01.CIR.98.19.2088.

ToxCastTM Data. “ToxCastTM Data.” US Environmental Protection Agency. http://www.epa.gov/ncct/toxcast/data.html

Vanden Heuvel, John P, Jerry T Thompson, Steven R Frame, and Peter J Gillies. 2006. “Differential Activation of Nuclear Receptors by Perfluorinated Fatty Acid Analogs and Natural Fatty Acids: A Comparison of Human, Mouse, and Rat Peroxisome Proliferator-Activated Receptor-Alpha, -Beta, and -Gamma, Liver X Receptor-Beta, and Retinoid X Rec.” Toxicological Sciences : An Official Journal of the Society of Toxicology 92 (2) (August): 476–89. doi:10.1093/toxsci/kfl014.

Venkata, Nagaraj Gopisetty, Jodie a Robinson, Peter J Cabot, Barbara Davis, Greg R Monteith, and Sarah J Roberts-Thomson. 2006. “Mono(2-Ethylhexyl)phthalate and Mono-N-Butyl Phthalate Activation of Peroxisome Proliferator Activated-Receptors Alpha and Gamma in Breast.” Toxicology Letters 163 (3) (June 1): 224–34. doi:10.1016/j.toxlet.2005.11.001.

Viswakarma, Navin, Yuzhi Jia, Liang Bai, Aurore Vluggens, Jayme Borensztajn, Jianming Xu, and Janardan K Reddy. 2010. “Coactivators in PPAR-Regulated Gene Expression.” PPAR Research 2010 (January). doi:10.1155/2010/250126.

Wahli, Walter, and B Desvergne. 1999. “Peroxisome Proliferator-Activated Receptors: Nuclear Control of Metabolism.” Endocrine Reviews 20 (5) (October): 649–88. Wu, Bin, Jie Gao, and Ming-wei Wang. 2005. “Development of a Complex Scintillation Proximity Assay for High-Throughput Screening of PPARgamma Modulators.” Acta Pharmacologica Sinica 26 (3) (March): 339–44. doi:10.1111/j.1745-7254.2005.00040.x.

Xu, Chuan, Ji-An Chen, Zhiqun Qiu, Qing Zhao, Jiaohua Luo, Lan Yang, Hui Zeng, et al. 2010. “Ovotoxicity and PPAR-Mediated Aromatase Downregulation in Female Sprague-Dawley Rats Following Combined Oral Exposure to Benzo[a]pyrene and Di-(2-Ethylhexyl) Phthalate.” Toxicology Letters 199 (3) (December 15): 323–32. doi:10.1016/j.toxlet.2010.09.015.

Yessoufou, a, and W Wahli. 2010. “Multifaceted Roles of Peroxisome Proliferator-Activated Receptors (PPARs) at the Cellular and Whole Organism Levels.” Swiss Medical Weekly 140 (September) (January): w13071. doi:10.4414/smw.2010.13071.

Yu, Songtao, and Janardan K Reddy. 2007. “Transcription Coactivators for Peroxisome Proliferator-Activated Receptors.” Biochimica et Biophysica Acta 1771 (8) (August): 936–51. doi:10.1016/j.bbalip.2007.01.008.