Relationship: 309



Thyroperoxidase, Inhibition leads to TH synthesis, Decreased

Upstream event


Thyroperoxidase, Inhibition

Downstream event


TH synthesis, Decreased

Key Event Relationship Overview


AOPs Referencing Relationship


Taxonomic Applicability


Term Scientific Term Evidence Link
human Homo sapiens High NCBI
rat Rattus norvegicus High NCBI
Xenopus laevis Xenopus laevis High NCBI
zebrafish Danio rerio High NCBI

Sex Applicability


Sex Evidence
Male High
Female High

Life Stage Applicability


Term Evidence
All life stages High

Key Event Relationship Description


Thyroperoxidase (TPO) is a heme-containing apical membrane protein within the follicular lumen of thyrocytes that acts as the enzymatic catalyst for thyroid hormone (TH) synthesis (Taurog, 2005). Two commonly used reference chemicals, propylthiouracil (PTU) and methimazole (MMI), are drugs that inhibit the ability of TPO to: a) activate iodine and transfer it to thyroglobulin (Tg) (Davidson et al., 1978); and, b) couple thyroglobulin (Tg)-bound iodotyrosyls to produce Tg-bound thyroxine (T4) and triiodothyronine (T3) (Taurog, 2005).

Evidence Supporting this KER


The weight of evidence supporting a direct linkage between the MIE, TPO inhibition, and the KE of decreased TH synthesis, is strong and supported by more than three decades of research in animals, including humans (Cooper et al., 1982; Cooper et al.,1983; Divi and Doerge, 1994).

Biological Plausibility


The biological plausibility for this KER is rated Strong. TPO is the only enzyme capable of de novo systhesis of TH. TPO catalyzes several reactions, including the oxidation of iodide, nonspecific iodination of tyrosyl residues of thyroglobulin (Tg) to form monoiodotyrosyl (MIT) or diiodotyrosyl (DIT) residues, and the coupling of these Tg-bound iodotyrosyls to produce Tg-bound T3 and T4 (Divi and Doerge, 1994; Kessler et al., 2008; Ruf et al., 2006; Taurog et al., 1996, 2005). Therefore, inhibition of TPO activity is widely accepted to directly impact TH synthesis.

Empirical Evidence


Empirical support for this KER is strong. There are several papers that have measured alterations in TPO and subsequent effects on TH synthesis. Taurog et al. (1996) showed decreased guicaol activity, decreased bound I125, and subsequent decreases in newly formed T3 and T4 per molecule of Tg, following exposure to PTU, MMI and some antibiotics.  Following in vivo exposure to PTU in rats (Cooper et al., 1982; 1983), there are concentration and time-dependent decreases in thyroid protein bound iodine and serum T4 and T3 that recovered one month after cessation of PTU exposure.  In addition, measures of thyroidal iodine content were highly correlated with intra-thyroidal PTU concentration. Vickers et al. (2012) demonstrated dose- and time- dependent inhibition of TPO activity in both human and rat thyroid homogenates exposed to MMI.  Tietge et al (2010) recently showed decreases in thyroidal T4 following MMI exposure in Xenopus.  Also in Xenopus, Haselman et al (2020) showed decreases in thyroidal iodotyrosines (MIT/DIT) and iodothyronines (T4/T3) following exposure to MMI. Doerge et al (1998) showed that a tryphenylmethane dye, malachite green, inhibited TPO and lowered thyroxine production. A recent paper used a series of benzothiazoles and showed TPO inhibition (guicaol assay) and inhibition of TSH stimulated thyroxine release from Xenopus thyroid gland explant cultures (Hornung et al., 2015). Chemically induced Inhibition of TPO has also been shown to result in reduced TH synthesis in zebrafish (Raldua and Babin, 2009; Thienpont et al., 2011; Rehberger et al., 2018).

Temporal Evidence: The temporal nature of this KER is applicable to all life stages, including development (Seed et al., 2005). The impact of decreased TPO activity on thyroidal hormone synthesis is similar across all ages. Good evidence for the temporal relationship of the KER comes from thyroid system modeling (e.g., Degon et al., 2008; Fisher et al., 2013) using data using data from studies of iodine deficiency and chemicals that inhibit NIS. In addition, there is ample evidence of the temporal impacts of TPO inhibition on TH synthesis, using ex vivo and in vitro measures that demonstrate the time course of inhibition following chemical exposures, including some data from human thyroid microsomes and ex vivo thyroid slices (Vickers et al., 2012). Future work is needed that measures both TPO inhibition and TH production during development. 

Dose-Response Evidence: Dose-response data is available from a number of studies that correlate TPO inhibition with decreased TH production measured using a variety of endpoints including iodine organification (e.g., Taurog et al., 1996), inhibition of guicaol oxidation in thyroid microsomes (e.g., Doerge and Chang, 2002), and direct measure of thyroid gland T4 concentrations (e.g., Hornung et al., 2015). However, there is a lack of dose-response data from developmental studies showing direct linkages from TPO inhibition to thyroidal TH synthesis.

Uncertainties and Inconsistencies


While it is clear that TPO inhibition will lead to altered hormone synthesis, there is a need for data that will inform quantitative modeling of the relationship between TPO inhibition and the magnitude of effects on thyroid hormone synthesis.

It is important to note that data from studies on genistein highlight this uncertainty. Doerge and colleagues have demonstrated that for this compound up to 80% TPO inhibition did not result in decreased serum T4 in rats (Doerge and Chang, 2002). This is not consistent with other prototypical TPO inhibitors (e.g., PTU, MMI). It remains to be determined, if for some presently unknown reason, that genistein is an outlier or not. This again points to the need for quantitative modeling of the relationship between TPO inhibtion and downstream KEs.

Quantitative Understanding of the Linkage


In Xenopus laevis, Haselman et al.(2020) demonstrated temporal profiles of thyroidal iodotyrosines (MIT/DIT) and iodothyronines (T4/T3), the products of TPO activity, following exposure to three different model TPO inhibitors (MMI, PTU, MBT) at multiple concentrations. This study established that, in Xenopus, measurable decreases in the products of TPO activity can occur as early as 2 days of exposure during pro-metamorphosis. However, despite consistent profiles of some iodo-species across chemicals, other iodo-species showed inconsistent profiles across chemicals. This highlights the multiple mechanisms of TPO (iodination and coupling) and differential susceptiblity to inhibition of those mechanisms depending on the chemical's type of interaction with TPO. The most consistent concentration-response relationship across chemicals and over time was demonstrated by thyroidal T4, which is the most relevant product to subsequent key events. At the highest concentrations tested for each chemcial, thyroidal T4 was below detection by 7 days of exposure across all three TPO inhibitors. Keeping in mind that the thyroid gland has follicular lumen space where thyroglobulin/T4 is stored until proteolysis and release to the blood, full inhibition of TPO would result in a delayed measureable response due to the time it takes to deplete stored hormone. Regardless of the delay, the results from this study imply full inhibition of TPO by each of these three chemicals at the highest test concentrations, but would require chemical residue analysis and/or toxicokinetic modeling to relate cellular/tissue concentrations at the site of TPO catalysis to levels of inhibition via Michaelis-Menten kinetic descriptions.

Profiles of thyroidal iodinated species demonstrated by Haselman et al. (2020) across three different TPO inhibitors suggests that a high level of TPO inhibition must occur in order to elicit responses in subsequent key events. Although the level of TPO inhibition is not directly quantifiable from this study, these data suggest that at least 90-100% inhibition was occurring since circulating T4 was not detectable at 10 days of exposure to the highest concentrations of MMI and MBT. However, additional efforts would be necessary to determine the minimum level of TPO inhibition that leads to a measurable decrease in thyroidal T4 and subsequently circulating T4.       

Response-response Relationship


There are only a limited number of studies where both TPO inhibition and iodine organification have been measured in vivo, and there are not enough data available to make any definitive quantitative correlations. One in vivo study in rats exposed to the TPO inhibitor genistein found no in vivo impact on serum thyroid hormone concentrations, even when TPO was inhibited up to 80% (Chang and Doerge, 2000).

Given that this is an MIE to KE relationship, there is only one response to evaluate in the relationship. Decreased TH synthesis, as measured by responses of iodinated species in the thyroid gland, is the result of TPO inhibition, which cannot be measured directly in vivo.



In vivo, evaluations of TPO inhibition are limited to evaluation of the iodinated species, or products of TPO activity, present in the thyroid gland at a particular time. However, as stated previously, any measurable response in these iodinated species is not a discreet assessment of TPO activity given that the gland maintains storage of hormone in the follicular lumen space and any alteration of TPO activity would be detected once the stores begin to be depleted. In Xenopus laevis, Haselman et al. (2020) showed a decrease in thyroidal iodinated species after only 2 days of exposure to potent TPO inhibitor MMI during thyroid-mediated metamorphosis and within 4 days for PTU and MBT, both model TPO inhibitors.

Known modulating factors


Iodine availability will impact the ability of TPO to iodinate tyrosine residues on thyroglobulin. Iodine availability to TPO can be impacted a number of ways. First, environmental availability of iodine can vary greatly depending on whether and how much iodine exists in surface waters for aquatic organisms (gill respirators) and in the diets of both terrestrial and aquatic organisms. Second, somewhat regardless of iodine availability through environmental uptake (i.e., barring extremely high iodine exposure), iodine is actively transported into the thyroid follicular cell from the blood via sodium-iodide symporter (NIS), which has been shown to be susceptible to inhibition by, for example, perchlorate. As such, iodine availability to TPO is mediated by functional NIS. Finally, iodine is not fully available to TPO on the apical surface of the thyroid follicular cell until it is transported through the apical membrane by pendrin, an anion exchange protein - mutations or inhibition of pendrin could affect iodine availability to TPO.

Hydrogen peroxide is also needed by TPO to mediate the oxidation of iodide, which is produced locally by dual oxidase (DUOX). A mutation or inhibition of DUOX will impact local production of H2O2 leading to lower oxidizing potential of TPO and less organification of iodide.  

Known Feedforward/Feedback loops influencing this KER


Thyroid stimulating hormone (TSH) released from the pituitary positively regulates the synthesis and release of thyroid hormones from the thyroid gland. As such, when TPO is inhibited and thyroid hormone synthesis is decreased, lower systemic levels of hormone cause feedback from the pituitary via TSH to upregulate a number of processes in the thyroid gland as a means of compensation, including (but not limited to) enhanced gene expression of NIS and thyrocyte cell proliferation (Tietge et al., 2010; Haselman et al., 2020).  

Domain of Applicability


Inhibition of TPO activity is widely accepted to directly impact TH synthesis. This is true for both rats and humans, as well as some fishes, frogs and birds. Most of the data supporting a causative relationship between TPO inhibition and altered TH synthesis is derived from animal studies, in vitro thyroid microsomes from rats or pigs, and a limited number of human ex vivo (Nagasaka and Hidaka, 1976; Vickers et al., 2012) and clinical studies. There are data to support that gene mutations in TPO result in congenital hypothyroidism, underscoring the essential role of TPO in human thyroid hormone synthesis.



Chang HC, Doerge DR. Dietary genistein inactivates rat thyroid peroxidase in vivo without an apparent hypothyroid effect. Toxicol Appl Pharmacol 168:244–252 (2000).

Cooper DS, Kieffer JD, Halpern R, Saxe V, Mover H, Maloof F, Ridgway EC (1983) Propylthiouracil (PTU) pharmacology in the rat. II. Effects of PTU on thyroid function. Endocrinology 113:921-928.

Cooper DS, Saxe VC, Meskell M, Maloof F, Ridgway EC. Acute effects of propylthiouracil (PTU) on thyroidal iodide organification and peripheral iodothyronine deiodination: correlation with serum PTU levels measured by radioimmunoassay. J Clin Endocrinol Metab. 1982 54(1):101-7.

Davidson, B., Soodak, M., Neary, J.T., Strout, H.V., and Kieffer, J.D. (1978). The irreversible inactivation of thyroid peroxidase by methylmercaptoimidazole, thiouracil, and propylthiouracil in vitro and its relationship to in vivo findings. Endocrinology 103:871–882.

Divi, R. L., and Doerge, D. R. (1994). Mechanism-based inactivation of lactoperoxidase and thyroid peroxidase by resorcinol derivatives. Biochemistry 33(32), 9668-74.

Doerge DR, Chang HC, Divi RL, Churchwell Mechanism for inhibition of thyroid peroxidase by leucomalachite green. Chem Res Toxicol. 1998 11(9):1098-104.

Doerge DR, Chang HC.  Inactivation of thyroid peroxidase by soy isoflavones, in vitro and in vivo.  J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Sep 25;777(1-2):269-79

Hornung MW, Kosian PA, Haselman JT, Korte JJ, Challis K, Macherla C, Nevalainen E, Degitz SJ.  In Vitro, Ex Vivo, and In Vivo Determination of Thyroid Hormone Modulating Activity of Benzothiazoles.Toxicol Sci. 2015 146(2):254-64.

Haselman, J.T., Olker, J.H., Kosian, P.A., Korte, J.J., Swintek, J.A., Denny, J.S., Nichols, J.W., Tietge, J.E., Hornung, M.W. and Degitz, S.J., 2020. Targeted pathway-based in vivo testing using thyroperoxidase inhibition to evaluate plasma thyroxine as a surrogate metric of metamorphic success in model amphibian Xenopus laevis. Toxicological Sciences175(2), pp.236-250.

Kessler, J., Obinger, C., and Eales, G. (2008). Factors influencing the study of peroxidase-generated iodine species and implications for thyroglobulin synthesis. Thyroid 18(7), 769-74, 10.1089/thy.2007.0310.

Nagasaka, A., and Hidaka, H. (1976). Effect of antithyroid agents 6-propyl-2-thiouracil and 1-mehtyl-2-mercaptoimidazole on human thyroid iodine peroxidase. J. Clin. Endocrinol. Metab. 43:152–158.

Raldua, D., Babin, P.J., 2009. Simple, Rapid Zebrafish Larva Bioassay for Assessing the Potential of Chemical Pollutants and Drugs to Disrupt Thyroid Gland Function. Environmental Science & Technology 43, 6844-6850.

Rehberger, K., Baumann, L., Hecker, M., Braunbeck, T., 2018. Intrafollicular thyroid hormone staining in whole-mount zebrafish (Danio rerio) embryos for the detection of thyroid hormone synthesis disruption. Fish Physiology and Biochemistry 44, 997-1010.

Ruf, J., and Carayon, P. (2006). Structural and functional aspects of thyroid peroxidase. Archives of biochemistry and biophysics 445(2), 269-77, 10.1016/j.abb.2005.06.023.

Taurog, A., Dorris, M. L., and Doerge, D. R. (1996). Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase. Archives of biochemistry and biophysics 330(1), 24-32,

Taurog A. 2005. Hormone synthesis. In: Werner and Ingbar’s The Thyroid: A Fundamental and Clinical Text (Braverman LE, Utiger RD, eds). Philadelphia:Lippincott, Williams and Wilkins, 47–81.

Thienpont, B., Tingaud-Sequeira, A., Prats, E., Barata, C., Babin, P.J., Raldua, D., 2011. Zebrafish Eleutheroembryos Provide a Suitable Vertebrate Model for Screening Chemicals that Impair Thyroid Hormone Synthesis. Environmental Science & Technology 45, 7525-7532.

Tietge JE, Butterworth BC, Haselman JT, Holcombe GW, Hornung MW, Korte JJ, Kosian PA, Wolfe M, Degitz SJ.   Early temporal effects of three thyroid hormone synthesis inhibitors in Xenopus laevis.  Aquat Toxicol. 2010 98(1):44-50

Vickers AE, Heale J, Sinclair JR, Morris S, Rowe JM, Fisher RL. Thyroid organotypic rat and human cultures used to investigate drug effects on thyroid function, hormone synthesis and release pathways. Toxicol Appl Pharmacol. 2012 260(1):81-8.