Aopwiki

SNAPSHOT

Created at: 2019-01-14 06:45

AOP ID and Title:


AOP 144: Endocytic lysosomal uptake leading to liver fibrosis
Short Title: lysosomal uptake induced liver fibrosis

Graphical Representation


Authors


Marina Kuburic 

Kirsten Gerloff 

Brigitte Landesmann° 


° F3 Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM

Directorate F – Health, Consumers and Reference Materials

Joint Research Centre, European Commission

marinakuburic22(at)gmail.com

Kirsten-Britta.Gerloff(at)yahoo.de

Brigitte.Landesmann(at)ec.europa.eu

 

 


Status

Author status OECD status OECD project SAAOP status
Under development: Not open for comment. Do not cite Under Development 1.47 Included in OECD Work Plan

Abstract


Hepatotoxicity is known to be an important endpoint of regulatory concern; it has been one of the frequent reasons for pharmacovigilance safety reports and human health risk assessments. Liver fibrosis in particular is a health problem resulting from chronic or repeated-dose chemical exposure and it is considered as an adverse outcome of regulatory interest. Liver fibrosis is a long and complex process involving various hepatic cell types, molecular mediators, receptors and signalling pathways. It occurs as a result of imbalance between collagen deposition and destruction, but also changes in the extracellular matrix composition (ECM). Due to this complexity appropriate cell model is currently unavailable.

The current AOP links endocytic lysosomal uptake and the formation of liver fibrosis. The molecular initiating event (MIE) is endocytic lysosomal uptake of chemical, leading to lysosomal disruption, the first key event (KE). Lysosomal disruption induces mitochondrial dysfunction, which leads to cell injury and both apoptosis and necrosis. Lysosomal disruption, mitochondrial dysfunction and cell injury/death present KEs on the cellular level. Cell death releases damage-associated molecular patterns (DAMPs) which lead to increased inflammatory mediators presence, the next KE along the path. Inflammatory mediators attract and activate leukocytes, which present the next KE. Activated leukocytes through molecular mediators activate hepatic stellate cells, which increases α-SMA in them. This KE increases amount of collagen I and III, which causes its accumulation. Collagen accumulation presents KE at the tissue level and leads to adverse outcome (AO) - liver fibrosis, which changes normal functioning of the whole organ. There is also important on-going process present throughout the pathway, which is connected with different KEs- oxidative stress. It is not classified as individual KE, but described in KEs and KERs related to it.

The value of this AOP is that it might support chemical risk assessment by identifying upstream biomarkers for adverse outcome, even though the adequate cell model is not available. This systematic organization of existed knowledge, but also of present uncertainties can facilitate regulatory processes, but also indicate the need for the new testing methods.

The AOP endocytic lysosomal uptake to liver fibrosis has high biological plausibility, supported with empirical evidence. However, quantitative data and temporal sequences between KEs are currently lacking and further efforts are necessary in their provision.


Background


 

Liver fibrosis is currently an important health problem potentially leading in its progressive form to cirrhosis and as such present a significant economic burden (Lim and Kim, 2008). The only therapy for chronic liver failure is liver transplantation, with 5.500 liver transplantations in Europe on a yearly basis, costing up to €100.000 the first year (Safadi and Friedman, 2002). There are constant research attempts for new therapeutic strategies, but so far without success. AOP concept presents an alternative approach which organizing mechanistic toxicological knowledge can lead to prevention of liver fibrosis.

The use and possible applications of nanomaterials (NMs) are in constant increase, for example in food, food-related products or cosmetics. Therefore, the safety of NMs systemically taken up in the body needs to be ensured. The liver is known to be one of the main target organs for ingested NMs, but inhaled particles can also reach the liver upon clearance from the lung (Johnston et al., 2010; Cui et al., 2011; Geraets et al., 2012). In vivo experiments on gavaged or injected (intraperitoneal or intravenously) TiO2 suggest a wide range of adverse effects on the liver: an increase in general serum markers for liver damage such as Alanine Aminotransferase or Aspartate Aminotransferase (Liu et al., 2009; Duan et al., 2010), an increase in inflammatory markers such as pro-inflammatory cytokines and/or infiltration of inflammatory cells (Ma et al., 2009; Cui et al., 2011; Kermanizadeh, 2012), an increase of markers for oxidative stress (Liu et al., 2010; Soliman et al., 2013), apoptosis, necrosis and also fibrosis (Chen et al., 2009; Alarifi et al., 2013). Oral NM administration appeared to induce overall milder adverse effects than systemic administration, most likely due to the typically limited absorption of NMs in the GI tract. Thus, it is important to keep in mind that the route of exposure and the size of the NM, play important role whether these reach the liver, and to which extent they're accumulated (Kermanizadeh, 2014).

Once a chemical is taken up by a cell, it is transported into the lysosome. In the lysosome, acidic environment can enhance the solubility of a NM, or it remains in initial nano form.  Both situations can induce toxicity, causing lysosomal swelling, followed by lysosomal damage and the release of pro-apoptotic proteins (Wang et al., 2013; Cho et al., 2011; Cho et al., 2012). But not only NMs cause lysosomal damage: fluoroquinolones (Ouedraogo et al., 2000), lysosomotropic detergents such as o-methyl-serine dodecylamide hydrochloride (Villamil Giraldo et al., 2016), artesunate (Yang et al., 2014), chloroquine (Ashoor et al., 2013) can do the same, and Reactive Oxygen Species (ROS) such as H2O2 can amplify this effect (Repnik et al., 2012).  The amount of lysosomal enzymes released into the cytosol regulates the cell death pathway: controlled increased permeability of lysosomal membrane, caused by limited level of stress, plays a vital role in the induction of apoptosis, whereas massive lysosomal rupture, caused by high stress levels, leads to necrosis (Bursch, 2001; Guicciardi et al., 2004). Lysosomes are known to trigger mitochondrial mediated cell death by the release of cathepsins into the cytosol (Repnik et al., 2012). At the same time however, lysosomes themselves are a source of ROS, which can lead to damage of the mitochondrial membrane (Wang et al., 2013; Kubota et al., 2010). Cell death further on leads to inflammation (Faouzi et al., 2001), which activates hepatic stellate cells and induce them to secrete collagen (Casini et al., 1997). It is established that collagen accumulation is a prestage of liver fibrosis (Bataller and Brenner, 2005; Lee and Friedman, 2011).

Overall, the connection between lysosomal and mitochondrial damage with liver inflammation and further on with fibrosis, is well known, regardless if triggered by chemicals, proteins or NMs (reviewed in Malhi and Gores, 2008; Kong et al., 2014). Therefore, due to its high importance it is described extensively in the current AOP.


Summary of the AOP

Events

Molecular Initiating Events (MIE), Key Events (KE), Adverse Outcomes (AO)

Sequence Type Event ID Title Short name
1 MIE 1539 Endocytotic lysosomal uptake endocytosis
2 KE 898 Disruption, Lysosome Disruption, Lysosome
3 KE 177 N/A, Mitochondrial dysfunction 1 N/A, Mitochondrial dysfunction 1
4 KE 55 N/A, Cell injury/death N/A, Cell injury/death
5 KE 1493 Increased Pro-inflammatory mediators Increased pro-inflammatory mediators
6 KE 1494 Leukocyte recruitment/activation Leukocyte recruitment/activation
7 KE 265 Activation, Stellate cells Activation, Stellate cells
8 KE 68 Accumulation, Collagen Accumulation, Collagen
9 AO 344 N/A, Liver fibrosis N/A, Liver fibrosis

Key Event Relationships

Upstream Event Relationship Type Downstream Event Evidence Quantitative Understanding
Endocytotic lysosomal uptake adjacent Disruption, Lysosome High
Disruption, Lysosome adjacent N/A, Mitochondrial dysfunction 1 High
N/A, Mitochondrial dysfunction 1 adjacent N/A, Cell injury/death Moderate Low
N/A, Cell injury/death adjacent Increased Pro-inflammatory mediators High
Increased Pro-inflammatory mediators adjacent Leukocyte recruitment/activation High
Leukocyte recruitment/activation adjacent Activation, Stellate cells High
Activation, Stellate cells adjacent Accumulation, Collagen High
Accumulation, Collagen adjacent N/A, Liver fibrosis High

Stressors


Name Evidence
nanoparticles
ROS
o-methyl-serine dodecylamide hydrochloride (MSDH)
3-aminopropanal
artesunate
Chloroquine bis(phosphate)
Norfloxacin
Ciprofloxacin

Overall Assessment of the AOP

Assessment of the Weight-of-Evidence supporting the AOP

 

Concordance of dose-response relationships

The present AOP is a purely qualitative description of the pathway. The present literature does not provide quantitative information on dose-response relationships.

 

Temporal concordance among the key events and adverse outcome

There is empirical evidence to support that a change in KEup leads to a change in the respective KEdown, leading to the AO.

 

Strength, consistency, and specificity of association of adverse outcome and initiating event

There is strong empirical evidence on the link between MIE and AO that has been described.

 

Biological plausibility, coherence, and consistency of the experimental evidence

There is high biological plausibility in the description of the AOP and its components. The available data describing the AOP are logic, coherent and consistent with current biological knowledge.

 

Uncertainties, inconsistencies and data gaps

The present AOP description is plausible, but entirely qualitative, and the addition of quantitative data on dose-response relationship and temporal scale would improve its applicability. Also, though there is strong empirical evidence supporting this AOP, at certain KERs we found some inconsistencies that need to be further investigated. Existing uncertainties and inconsistencies are stated in each KER description, but here we will describe the most important ones.

Repnik and colleagues detected that after exposure to LLOMe, cathepsins remain in lysosomes and are being degraded there which is in contradiction with most of the previous studies (Repnik et al., 2017). There is strong empirical evidence that incubation of cathepsin B with mitochondria and cytosolic factors increase mitochondrial permeabilization, but in some studies pharmacological inhibition of cathepsins or knockout of genes coding for cathepsins failed to prevent mitochondrial membrane permeabilizatio and cell death, suggesting that other lysosomal proteases might be responsible for Bid cleavage (Reiners et al., 2002; Boya et al., 2003).

The histochemical analysis of hippocampus of rats treated with domoic acid for 15 days has revealed no presence of apoptotic bodies and no Fluoro-Jade B positive cells (Schwarz et al., 2014).

The inflammatory role of HMGB-1 is still not completely clear. There are many studies that confirm its pro-inflammatory activity, but in some experiments highly purified HMGB-1 had little pro-inflammatory activity (Rouhiainen et al., 2007), while in another injection of recombinant HMGB-1 into infarcted heart muscle in vivo stimulated regeneration and repair (Limana et al., 2005).

Lloyd and colleagues found that several chemokines can stimulate the adherence of peripheral blood lymphocytes to ICAM-1 coated slides (Loyd et al., 1996). However, by using a parallel plate flow chamber, other study failed to observe such an effect (Carr et al., 1996).

 

 

 


Domain of Applicability

Life Stage Applicability
Life Stage Evidence
Not Otherwise Specified
Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens High NCBI
mouse Mus musculus High NCBI
rat Rattus norvegicus High NCBI
Sex Applicability
Sex Evidence
Unspecific

Life Stage Applicability

The described AOP is a general mechanism, that furthermore can be considered as not being limited to only the liver as the target organ. Also, to current knowledge, this AOP is not limited to a specific life stage.

Taxonomic Applicability

Most of the work performed to elaborate parts of this AOP was done using murine or human cells and cell lines, human blood samples or tissues, or mouse models. Examples include

mouse: Narumi et al., 1992; Fahy et al., 2001; Kagedal et al., 2001; Faouzi et al., 2001; Werneburg et al., 2002; Chen et al., 2007; Seki et al., 2007; Leung et al., 2008; Dalton et al., 2009; Lee et al., 2009 Gäbele et al., 2009; Nan et al., 2013; Pradere et al., 2013; McHedlidze et al., 2014; Chang et al., 2014;

rat: Rockey et al., 1992;George et al., 1999; Reeves et al., 2000; Luckey and Petersen, 2001; Duffield et al., 2005; Imamura et al., 2005; Natajaran et al., 2006; Liedtke et al., 2011; Li et al., 2012; Jung et al., 2015

human: Bleul et al., 1996; Miyamoto et al., 2000; Andersson et al., 2000; Yamada et al., 2001;  Scaffidi et al., 2002; Safadi and Friedman, 2002; Boya et al., 2003; Cirman et al., 2004; Bataller and Brenner, 2005; Bell et al., 2006; Rockey and Friedman, 2006; Friedman, 2008; Lim and Kim, 2008; Winklhofer and Haass, 2010; Clarke et al., 2010; Hamacher-Brady et al., 2011; Santibañez et al., 2011; Lee and Friedman, 2011; Wang et al., 2013; Loos et al., 2014; Decaris et al., 2015; Sun et al., 2015;


Sex Applicability

As described above, the AOP is widely applicable, therefore no specific sex applicability is known at this point.

Essentiality of the Key Events

The essentiality of almost all of the KEs in this AOP was rated high as there is much experimental evidence that the blocking of one KE prevents the next downstream KE and therefore the whole AOP. The essentiality of KE Mitochondrial dysfunction was rated as moderate, as there are two pathways to apoptosis (the next downstream KE), intrinsic and extrinsic, and only intrinsic pathway includes mitochondrial dysfunction (reviewed in Elmore, 2007).

Some of the evidence for the essentiality of KEs is listed below.

Exposure of cells to ammonium chloride prior to exposure to sphingosine resulted in formation of NH3, which entered into lysosomes and became protonated and increased the pH of the organelle. This exposure prevented the accumulation of sphingosine in the lysosome and provided protection against its lysosomolytic and apoptosis-inducing effects (Kagedal et al., 2001).

Inhibition of lysosomal membrane permeabilization (LMP) with Baf A1 – that inhibits lysosomal vacuolar H+ ATP-ase, prevented mitochondrial membrane permeabilization (MMP) - the next downstream KE, while inhibition of MMP in Bax/Bak double knocks out cells didn't prevent LMP (Boya et al., 2003).

Faouzi and colleagues showed that the inhibition of apoptosis causes inhibition of the inflammatory response (Faouzi et al., 2001), while other study showed that an inhibitor of apoptosis is blocking the release of HMGB-1 mediator specifically (Bell et al., 2006).  

A human CXC chemokine antagonist, growth-related oncogene GROα(8-73), inhibited calcium mobilization induced by MIP-2, and the pretreatment of mice with this antagonist inhibited, in a dose-dependent manner, the influx of neutrophils induced by MIP-2, TNF-α, LPS and IL-1β (McColl and Clark-Lewis, 1999).

There is strong evidence that the blockade of TGF-β alone is sufficient to completely block experimental fibrogenesis in liver (reviewed in Gressner et al., 2002). The activation of HSCs can be partially blocked by anti-TGF-β antibodies (Zimmermann et al., 2010) and blocked by overexpression of Smad7, a natural antagonist of TGF-β signalling (Dooley et al., 2003).  Macrophage depletion led to a significant reduction in the number of HSCs (Duffield et al., 2005).

Weight of Evidence Summary

Summary Table
Provide an overall summary of the weight of evidence based on the evaluations of the individual linkages from the Key Event Relationship pages.

Support for essentiality of KEs

MIE Endocytic lysosomal uptake

Essentiality of the MIE is high.

Exposure of cells to NH3 prevented the accumulation of sphingosine, known lysosomotropic agent, in the lysosomes and provided protection against its lysosomolytic and apoptosic effects (Kagedal et al., 2001).

KE1 Lysosomal disruption

 

Essentiality of the KE1 is high.

Inhibition of LMP prevented MMP, the next downstream KE, and the entire pathway (Boya et al., 2003). The treatment of the cells with cathepsins inhibitors decreased MMP and prevented apoptosis (Roberg et al., 1999; Kagedal et al., 2001).

KE2 Mitochondrial dysfunction

 

Essentiality of the KE2 is moderate.

There are two apoptotic pathways, intrinsic and extrinsic, and only intrinsic pathway includes mitochondrial dysfunction (reviewed in Elmore, 2007).

KE3 Cell death/injury

 

Essentiality of the KE3 is high.

The inhibition of apoptosis causes blockage of release of inflammatory mediators and inhibition of the inflammatory response (Faouzi et al., 2001; Bell et al., 2006).

KE4 Increased inflammatory mediators

Essentiality of the KE4 is high.

Chemokine antagonist can prevent influx of neutrophils (McColl and Clark-Lewis, 1999).

KE5 Leukocyte recruitment/ activation

Essentiality of the KE5 is high.

Macrophage depletion leads to a significant reduction in the number of HSCs, the next downstream KE (Duffield et al., 2005). After bile duct ligation, Kupffer cell–depleted mice showed almost complete suppression of HSC activation and fibrosis (Seki et al., 2007).

KE6 HSC activation

 

Essentiality of the KE6 is high.

Experimental inhibition of HSC activation prevents fibrosis (Friedman, 2002; Anan et al., 2006; Kisseleva and Brenner, 2008; Son et al., 2009).

KE7 Collagen accumulation

 

Essentiality of the KE7 is high.

Continuing imbalance between the deposition and degradation of ECM is a pre-requisite of liver fibrosis (Lee and Friedman, 2011).

AO Liver fibrosis

 

It is generally accepted that any chronic and repeated liver injury can result in myofibroblast activation, leading to hepatic fibrosis and cirrhosis (Jaeschke, 2002; Lee William, 2003; Ramachandran and Kakar, 2009).

Support for Biological Plausibility of KERs

MIE->KE1

 

Biological plausibility of the KER between MIE and KE1 is high.

Trapping of lysosomotropic agents accumulates substances inside of the lysosomes, increases volume of these organelles, and big lysosomes are more prone to rupture (Ono et al., 2003).

KE1->KE2

 

Biological plausibility of the KER between KE1 and KE2 is high.

In the last decade there is a growing body of evidences about the strong functional link between lysosomes and mitochondria that play an important role in physiology and pathology. The evidences also showed link between lysosomal and mitochondrial damage, and that lysosomal damage precedes mitochondrial injury (e.g. Droga-Mazovec et al., 2008; Ghosh et al., 2011).

KE2->KE3

 

Biological plausibility of the KER between KE2 and KE3 is high.

There is functional mechanistic understanding supporting this relationship between KE2 and KE3, involving ROS formation, ATP depletion and apoptogenic factors (Richter et al., 1996; Leist et al., 1997; Nicotera et al., 1998; Brenner and Mak, 2009; Lu et al., 2014; Zhou et al., 2015).

KE3->KE4

 

Biological plasubility of the KER between KE3 and KE4 is high.

The dead cells can secrete inflammatory mediators that trigger infiltration of immune cells. However, if this becomes chronic it has the potential to enhance tissue damage and ultimately induce fibrosis (Jaeschke, 2002; Cullen et al., 2013).

KE4->KE5

 

Biological plausibility of the KER between KE4 and KE5 is high.

There is much evidence that application of chemokines attract leukocytes to specific site in different species (Beck et al., 1997; Lee et al., 2000; Fahy et al., 2001; Nikiforou et al., 2016).

KE5->KE6

 

Biological plausibility of the KER between KE5 and KE6 is high.

The recruitment of immune cells from the circulation into the injured tissue is the key mechanism during fibrogenesis in the liver (Heymann and Tacke, 2016).

KE6->KE7

 

Biological plausibility of the KER between KE6 and KE7 is high.

The functional relationship between stellate cells activation and collagen accumulation is consistent with established biological knowledge (Milani et al., 1994; Benyon and Arthur; 2001; Safadi and Friedman, 2002; Kershenobich Stalnikowitz and Weisssbrod , 2003; Bataller and Brenner, 2005; Kolios et al., 2006; ; Guo and Friedman, 2007; Li, Jing-Ting et al., 2008; López-Novoa and Nieto, 2009; Lee und Friedman 2011).

KE7->AO

 

Biological plausibility of the KER between KE7 and AO is high.

By definition, liver fibrosis is the excessive accumulation of ECM proteins that are produced by HSCs. The KER between this KE and the AO is undisputed (Poynard et al., 1997; Bataller and Brenner, 2005; Rockey and Friedman, 2006; Brancatelli et al., 2009; Lee and Friedman, 2011).

Empirical Support for KERs

MIE->KE1

 

Empirical support of the KER between MIE and KE1 is high.

Even the accumulation of substances that are physiologically present in lysosomes, such as pro-cathepsins, can lead towards lysosomal dysfunction (Jung et al., 2015). Sphingosine is a lysosomotropic agent that accumulates within the lysosomes, where it permeabilizes the membrane via a detergent mechanism and provokes release of lysosomal enzymes (Kagedal et al., 2001). NM captured in lysosomes can cause lysosomal swelling, disruption and the release of pro-apoptotic proteins (Cho et al., 2011; Cho et al., 2012; Wang et al., 2013).

KE1->KE2

 

Empirical support of the KER between KE1 and KE2 is high.

LMP is detected couple of hours earlier than MMP, after exposure to ciprofloxacine, norfloxacine and hydroxychloroquine, and cells with MMP are sub-ensmeple of the group of cells with LMP (Boya et al., 2003).

When isolated mitochondria are incubated with purified cathepsin B in the presence of cytolic extracts, a release of cytochrome c from mitochondria is detected (Guicciardi et al., 2000). The microinjection of cathepsin D to the cell causes cytochrome c release, caspases activation and apoptosis (Roberg et al., 2002).

Bid protein needs to be cleaved in order to cause cytochrome c release (Luo et al., 1998; Gross et al., 1999; Stoka et al., 2001).

Incubation of Bax with isolated mitochondria resulted in cytochrome c release while Bcl-xl inhibits this release (Jurgensmeier et al., 1998).

KE2->KE3

 

Empirical support of the KER between KE2 and KE3 is moderate.

Mice injected intraperitoneally with DomA have shown increase of the TUNEL positive cells in the hippocampus, decreased indicators of mitochondria function and elevated ROS levels (Lu et al., 2012, Wu et al., 2012). The incidence of downstream KE (cell death) is higher than the incidence of downstream KE (mitochondrial dysfunction).

In vitro studies (Giordano et al., 2007; 2009) suggest that both KEs are affected by the same dose of DomA and that the incidence of KE down (cell death) is higher than the incidence of KE up (mitochondrial dysfunction), with KE up happening earlier than KE down.

KE3->KE4

 

Empirical support of the KER between KE3 and KE4 is high.

During the apoptosis of Jurkat cells treated with various agents, HMGB-1 was released into the media (Bell et al., 2006), which was found to activate leukocytes and stimulate the production of pro-inflammatory mediators in vitro (Li et al., 2004; Zimmermann et al., 2004). ATP can also stimulate the production of pro-inflammatory cytokines from macrophages (Ferrari et al., 1997; Ferrari et al., 2006).

Neutralization or genetic deficiency of IL-1 inhibited inflammation responses to injected dead cells (Chen et al., 2007; Kono et al., 2010). Injection into mice of a variety of other dead cell types that genetically lack both IL-1α and IL- 1β stimulated an inflammatory response that was equivalent to that of wildtype necrotic cells (Kono et al., 2010). This implicates that IL-1 that is driving the sterile inflammatory response in many cases is not coming directly from the dead cell but is produced by cells in the host upon recognition of cell death.

KE4->KE5

 

Empirical support of the KER between KE4 and KE5 is high.

The exposure of mice to FliCind strain S. Typhimurium triggered a significant neutrophil influx in the spleen of wild-type mice, but not of Il1b−/−Il18−/− mice (Jorgensen et al., 2016).

It was shown that exposure of cells to IL-1β, TNF-α, and IFN-γ resulted in the induction of RANTES mRNA and protein (Ortiz et al., 1996; Miyamoto et al., 2000). Intradermal injection of RANTES induces a potent T-lymphocyte and eosinophils recruitment (Fahy et al., 2001; Beck et al., 1997).  Intradermal administration of MIP-1a resulted in accumulation of monocytes, lymphocytes, eosinophils and recruitment of neutrophils (Lee et al., 2000).

The number of white blood cells, monocytes, and neutrophils was increased in cord blood after 6 days of IL-1α exposure (Nikiforou et al., 2016).

KE5->KE6

 

Empirical support of the KER between KE5 and KE6 is moderate.

Karlmark et al., 2009 found that intrahepatic CD11bF4/80 monocyte-derived cells and liver resident macrophages produce TGF-β1 and thereby directly activate HSCs. It was proven that the treatment of cultured hepatic cells with TGF-β1 increased type I pro-collagen mRNA levels (Czaja et al., 1989).

KE6->KE7

 

Empirical support of the KER between KE6 and KE7 is moderate.

It is difficult to stimulate sufficient collagen production and its incorporation into a pericellular matrix in vitro. Because of that analytical methods have focused on measurement of pro-collagen secreted into culture medium or measurement of α-smooth muscle actin (α-SMA) expression, a marker of fibroblast activation. In primary culture, HSCs from normal liver begin to express α-SMA coincident with culture-induced activation (Rockey et al., 1992; Chen and Raghunath, 2009).

KE7->AO

 

Empirical support of the KER between KE7 and AO is high.

There is a smooth transition from collagen accumulation to liver fibrosis without a definite threshold with plenty in vivo evidence (Poynard et al., 1997; Bataller and Brenner, 2005; Rockey and Friedman, 2006; Brancatelli et al., 2009; Lee and Friedman, 2011).

Quantitative Consideration

Quantitative understanding of the AOP is low, as there is lack of quantitative data on dose-responce relationship. Further research efforts should be made in this direction to improve the quantitative understanding of the present AOP.

References


Alarifi S, Ali D, Al-Doaiss AA, Ali BA, Ahmed M, Al-Khedhairy AA. Histologic and apoptotic changes induced by titanium dioxide nanoparticles in the livers of rats. Int. J. Nanomedicine (2013) 8:3937–43.

Anan A, Baskin-Bey ES, Bronk SF, Werneburg NW, Shah VH, Gores GJ. Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology (2006) 43(2): 335-344.

Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Janson A, Kokkola R, Zhang M, Yang H, Tracey KJ. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. (2000) 192:565–70.

Ashoor R, Yafawi R, Jessen B, Lu S. The Contribution of Lysosomotropism to Autophagy Perturbation. (2013) PLoS ONE 8(11): e82481.

Bataller R, Brenner DA. Liver Fibrosis. J.Clin. Invest. (2005) 115(2):209-218.

Beck LA, Dalke S, Leiferman KM, Bickel CA, Hamilton R, Rosen H, Bochner BS, Schleimer RP. Cutaneous injection of RANTES causes eosinophil recruitment: comparison of nonallergic and allergic human subjects. J. Immunol. (1997) 159:2962–2972.

Bell CW, Jiang W, Reich CF, Pisetsky DS. The extracellular release of HMGB1 during apoptotic cell death.  Am. J. Physiol. Cell. Physiol. (2006) 291(6): C1318–C1325.

Benyon RC, Arthur MJ (2001), Extracellular matrix degradation and the role of stellate cells. Semin. Liver Dis. (2001) 21(3):373-384.

Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. (1996) 184(3): 1101–1109.

Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, Jäättelä M, Kroemer G. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J. Exp. Med. (2003) 197:1323–1334.

Brancatelli G, Baron RL, Federle MP, Sparacia G, Pealer K. Focal confluent fibrosis in cirrhotic liver: natural history studied with serial CT. AJR Am. J. Roentgenol. (2009) 192 (5): 1341-1347.

Brenner D, Mak TW. Mitochondrial cell death effectors.  Curr. Opin. Cell. Biol. (2009) 21(6): 871–877.

Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ. (2001) 8(6):569-81

Carr MW, Alon R, Springer TA. The C-C chemokine MCP-1 differentially modulates the avidity of beta 1 and beta 2 integrins on T lymphocytes. Immunity (1996) 4: 179–187.

Chang W, Yang M, Song L, Shen K, Wang H, Gao X, Li M, Niu W, Qin X. Isolation and culture of hepatic stellate cells from mouse liver. Acta Biochim. Biophys. Sin. (Shanghai). (2014) 46(4):291-8.

Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A. Chem. Anal. Control Expo. Risk. Assess. (2008) 25:241–58.

Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. (2007) 13:851–856.

Chen J, Dong X, Zhao J, Tang G. In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J. Appl. Toxicol. (2009) 29:330–7.

Chen C, Raghunath M. Focus on collagen: in vitro systems to study fibrogenesis and antifibrosis state of the art. Fibrogenesis Tissue Repair (2009) 15 (2):7.

Cho W-S, Duffin R, Howie SEM, Scotton CJ, Wallace WAH, Macnee W, Bradley M, Megson IL, Donaldson K. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part. Fibre Toxicol. (2011) 8:27.

Cho W-S, Duffin R, Thielbeer F, Bradley M, Megson IL, MacNee W, Poland CA, Tran CL, Donaldson K. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol. Sci. (2012) 126:469–477.

Cirman T, Orešić K, Mazovec GD, Turk V, Reed JC, Myers RM, Salvesen GS, Turk B. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins, J. Biol. Chem.  (2004) 279: 3578–3587.

Clarke MCH, Talib S, Fig NL, Bennet MR. Vascular Smooth Muscle Cell Apoptosis Induces Interleukin-1–Directed Inflammation, Effects of Hyperlipidemia-Mediated Inhibition of Phagocytosis. Circ. Res. (2010) 106(2): 363–372.

Cui Y, Liu H, Zhou M, Duan Y, Li N, Gong X, Hu R, Hong M, Hong F. Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. J. Biomed. Mater. Res. A. (2011) 96:221–9.

Cullen SP, Henry CM, Kearney CJ, Logue SE, Feoktistova M, Tynan GA, Lavelle EC, Leverkus M, Martin SJ. Fas/CD95-induced chemokines can serve as "find-me" signals for apoptotic cells. Mol. Cell. (2013) 49(6):1034-48.

Czaja MJ, Weiner FR, Flanders KC, Giambrone MA, Wind R, Biempica L, Zern MA. (1989), In vitro and in vivo association of transforming growth factor-beta 1 with hepatic fibrosis. J. Cell. Biol. (1989) 108(6): 2477-2482.

Dalton SR, Lee SM, King RN, Nanji AA, Kharbanda KK, Casey CA, McVicker BL. Carbon tetrachloride-induced liver damage in asialoglycoprotein receptor-deficient mice. Biochem. Pharmacol. (2009) 77(7): 1283-1290.

Decaris ML, Emson CL, Li K, Gatmaitan M, Luo F, Cattin J, Nakamura C, Holmes WE, Angel TE, Peters MG, Turner SM, Hellerstein MK. Turnover rates of hepatic collagen and circulating collagen- associated proteins in humans with chronic liver disease. PLoS One (2015) 10 (4) e0123311.

Dekkers S, Krystek P, Peters RJB, Lankveld DPK, Bokkers BGH, van Hoeven-Arentzen PH, Bouwmeester H, Oomen AG. Presence and risks of nanosilica in food products. Nanotoxicology (2011) 5:393–405.

Duan Y, Liu J, Ma L, Li N, Liu H, Wang J, Zheng L, Liu C, Wang X, Zhao X, Yan J, Wang S, Wang H, Zhang X, Hong F. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials (2010) 31:894–9.

Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. (2005) 115:56-65.

Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Ten Dijke P, Gressner AM. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology (2003) 125: 178–191.

Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. (2007) 35(4):495-516.

Fahy O, Porte H, Sénéchal S, Vorng H, McEuen AR, Buckley MG, Walls AF, Wallaert B, Tonnel AB, Tsicopoulos A. Chemokine-induced cutaneous inflammatory cell infiltration in a model of Hu-PBMC-SCID mice grafted with human skin. Am. J. Pathol. (2001) 158(3):1053-63.

Faouzi S, Burckhardt BE, Hanson JC, Campe CB, Schrum LW, Rippe RA, Maher JJ. Anti-Fas induces hepatic chemokines and promotes inflammation by an NF-B-independent, caspase-3-dependent pathway. J. Biol. Chem. (2001) 276:49077-49082.

Ferrari D, Chiozzi P, Falzoni S, Dal Suino M, Melchiorri L, Baricordi OR, Di Virgilio F. Extracellular ATP triggers IL- 1 beta release by activating the purinergic P2Z receptor of human macrophages. J. Immunol. (1997) 159:1451–1458.

Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F. The P2X7 receptor: a key player in IL-1 processing and release. J. Immunol. (2006) 176:3877–3883.

Friedman SL. Hepatic Fibrosis-Role of Hepatic Stellate Cell Activation, Med. Gen. Med.(2002)  4(3):27.

Friedman SL. Mechanisms of Hepatic Fibrogenesis. Gastroenterology (2008)  134(6): 1655–1669.

Gäbele E, Froh M, Arteel GE, Uesugi T, Hellerbrand C, Schölmerich J, Brenner DA, Thurman RG, Rippeb RA. TNFalpha is required for cholestasis-induced liver fibrosis in the mouse. Biochem. Biophys. Res. Commun. (2008) 378(3):348-53.

George J, Roulot D, Koteliansky VE, Bissell DM. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis. Proc. Natl. Acad. Sci. (1999) 96(22): 12719-12724.

Geraets L, Oomen AG, Schroeter JD, Coleman VA, Cassee FR. Tissue distribution of inhaled micro- and nano-sized cerium oxide particles in rats: results from a 28-day exposure study. Toxicol. Sci. (2012) 127:463–73.

Giordano G, White CC, Mohar I, Kavanagh TJ, Costa LG. Glutathione levels modulate domoic acid-induced apoptosis in mouse cerebellar granule cells. Toxicol. Sci. (2007) 100: 433-444.

Giordano G, Li L, White CC, Farin FM, Wilkerson HW, Kavanagh TJ, Costa LG. Muscarinic receptors prevent oxidative stress-mediated apoptosis induced by domoic acid in mouse cerebellar granule cells. J. Neurochem. (2009) 109: 525-538.

Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-β in hepatic fibrosis. Front. Biosci. (2002) 7: d793–807.

Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ. Caspase cleaved BID targets mitochondrial and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. (1999) 274: 1156 -1163.

Guicciardi ME,  Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C, Kaufmann SH, Gores GJ. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J. Clin. Invest. (2000) 106:1127–1137.

Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene. (2004) 23(16):2881-90.

Guo J, Friedman SL. Hepatic fibrogenesis. Semin. Liver. Dis. (2007) 27(4): 413-426.

Hamacher-Brady A, Stein HA, Turschner S, Toegel I, Mora R, Jennewein N, Efferth T, Eils R, Brady NR. Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J. Biol. Chem. (2011) 286(8):6587-601.

Hamdy N, El-Demerdash E. New therapeutic aspect for carvedilol: antifibrotic effects of carvedilol in chronic carbon tetrachloride-induced liver damage. Toxicol. Appl. Pharmacol. (2012) 261(3): 292-299.

Heymann F, Tacke F. Immunology in the liver–from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. (2016) 13: 88–110.

Imamura M, Ogawa T, Sasaguri Y, Chayama K, Ueno H. Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats. Gastroenterology (2005) 128:138-146.

Jaeschke H. Inflammation in response to hepatocellular apoptosis. Hepatology. (2002) 35(4):964-966.

Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters JJ. Mechanisms of hepatotoxicity.  Toxicological Sciences (2002) 65(2): 166–176.

Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol. (2010) 40:328–46.

Jorgensen I, Lopez JP, Laufer SA, Miao EA. IL-1β, IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis. Eur. J. Immunol. (2016) 46(12): 2761–2766.

Jung M, Lee J, Seo H-Y, Lim JS, Kim E-K. Cathepsin Inhibition-Induced Lysosomal Dysfunction Enhances Pancreatic Beta-Cell Apoptosis in High Glucose. PLoS ONE. (2015) 10(1):e011697.

Jürgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC.  Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. U S A. (1998) 95(9): 4997–5002.

Kagedal K, Zhao M, Svensson I, Brunk UT. Sphingosine-induced apoptosis is dependent on lysosomal proteases. The Biochemical journal.  (2001) 359: 335-43.

Karlmark KR, Wasmuth HE, Trautwein C, Tacke F. Chemokine-directed immune cell infiltration in acute and chronic liver disease. Expert. Rev. Gastroenterol. Hepatol. (2008) 2:233-242.

Kermanizadeh A: Engineered Nanomaterial Impact in the Liver following Exposure via an Intravenous Route–The Role of Polymorphonuclear Leukocytes and Gene Expression in the Organ. J. Nanomed. Nanotechnol. (2012) 04:1–7.

Kershenobich Stalnikowitz D,  Weisssbrod AB. Liver Fibrosis and Inflammation. A Review, Annals of Hepatology  (2003) 2(4): 159-163.

Kermanizadeh A, Gaiser BK, Johnston H, Brown DM, Stone V. Toxicological effect of engineered nanomaterials on the liver. Br. J. Pharmacol. (2014) 171(17):3980-7.

Kisseleva T, Brenner DA. (2008), Mechanisms of Fibrogenesis. Exp. Biol. Med. (2008) 233(2):109-122.

Kolios G, Valatas V, Kouroumalis E. Role of Kupffer cells in the pathogenesis of liver disease. World J.Gastroenterol. (2006)  12(46): 7413-7420.

Kong XY, Nesset CK, Damme M, Løberg EM, Lübke T, Mæhlen J, Andersson KB, Lorenzo PI, Roos N, Thoresen GH, Rustan AC, Kase ET, Eskild W. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells. Disease models & mechanisms (2014) 7(3): 351-62.

Kono H, Karmarkar D, Iwakura Y, Rock KL. Identification of the cellular sensor that stimulates the inflammatory response to sterile cell death. J. Immunol. (2010) 184(8):4470-8.

Kubota C, Torii S, Hou N, Saito N, Yoshimoto Y, Imai H, Takeuchi T. Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J. Biol. Chem. (2010) 285(1):667-74.

Lee SC, Brummet ME, Shahabuddin S, Woodworth TG, Georas SN, Leiferman KM, Gilman SC, Stellato C, Gladue RP, Schleimer RP, Beck LA. Cutaneous injection of human subjects with macrophage inflammatory protein-1 alpha induces significant recruitment of neutrophils and monocytes. J. Immunol. (2000) 164: 3392-3401.

Lee William M. Drug- induced hepatotoxicity. N. Engl. J. Med.  (2003) 349(5): 474-485.

Lee PY, Li Y, Kumagai Y, Xu Y,  Weinstein JS, Kellner ES, Nacionales DC, Butfiloski EJ, van Rooijen N, Akira S, Sobel ES, Satoh M, Reeves WH. Type I Interferon Modulates Monocyte Recruitment and Maturation in Chronic Inflammation. Am. J. Pathol. (2009) 175(5): 2023–2033.

Lee UE, Friedman SL. Mechanisms of Hepatic Fibrogenesis. Best Pract. Res. Clin. Gastroenterol. (2011) 25(2): 195-206.

Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. (1997) 185: 1481−1486.

Leung TM, Tipoe GL, Liong EC, Lau TY, Fung ML, Nanji AA. Endothelial nitric oxide synthase is a critical factor in experimental liver fibrosis. Int. J. Exp. Pathol. (2008) 89(4):241-50.

Li J, Wang H, Mason JM, Levine J, Yu M, Ulloa L, Czura CJ, Tracey KJ, Yang H. Recombinant HMGB1 with cytokine-stimulating activity. J. Immunol. Methods. (2004) 289:211–23.

Li JT, Liao ZX, Ping J, Xu D, Wang H. Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J. Gastroenterol. (2008) 43(6):419–428.

Li L, Zongqiang H, Wen L, Mingdao H, JIanghua R, Peng C, Qiangming S. Establishment of a standardized liver fibrosis model with different pathological stages in rats. Gastroenterol. Res. Pract. (2012) Article ID 560345.

Liedtke C, Luedde T, Sauerbruch T, Scholten D, Streetz K, Tacke F, Tolba R, Trautwein C, Trebicka J, Weiskirchen R. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. Fibrogenesis Tissue Repair (2013) 6(1):19.

Lim YS, Kim WR. The global impact of hepatic fibrosis and end-stage liver disease. Clin. Liver Dis.  (2008) 12:733–746

Limana F, Germani A, Zacheo A, Kajstura J, Di Carlo A, Borsellino G, Leoni O, Palumbo R, Battistini L, Rastaldo R, Müller S, Pompilio G, Anversa P, Bianchi ME, Capogrossi MC. Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circ. Res. (2005) 97(8): e73–e83

Liu H, Ma L, Zhao J, Liu J, Yan J, Ruan J, Hong F. Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol. Trace Elem. Res. (2009) 129:170–80.

Liu H, Ma L, Liu J, Zhao J, Yan J, Hong F. Toxicity of nano-anatase TiO2 to mice: Liver injury, oxidative stress. Toxicol. Environ. Chem. (2010) 92:175–186.

Lloyd A, Oppenheim J, Kelvin D, Taub D. Chemokines regulate T cell adherence to recombinant adhesion molecules and extracellular matrix proteins. J. Immunol. (1996) 156: 932–938.

Loos C, Syrovets T, Musyanovych A, Mailänder V, Landfester K, Nienhaus GU, Simmet T. Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions. Beilstein. J. Nanotechnol. (2014) 5:2403-12.

López-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol. Med. (2009) 1(6-7): 303–314.

Lu J, Wu DM, Zheng YL, Hu B, Cheng W, Zhang ZF. Purple sweet potato color attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor-α-mediated mitochondrial biogenesis signaling in mice. Free Radic. Biol. Med. (2012) 52(3): 646-59.

Lu TH, Su CC, Tang FC, Chen CH, Yen CC, Fang KM, Lee KL, Hung DZ, Chen YW. Chloroacetic acid triggers apoptosis in neuronal cells via a reactive oxygen species-induced endoplasmic reticulum stress signaling pathway. Chem. Biol. Interact. (2014) 225: 1-12.

Luckey SW, Petersen DR. Activation of Kupffer cells during the course of carbon tetrachloride-induced liver injury and fibrosis in rats. Exp. Mol. Pathol.  (2001) 71(3): 226-240.

Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, aBcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell (1998) 94: 481 - 490.

Ma L, Zhao J, Wang J, Liu J, Duan Y, Liu H, Li N, Yan J, Ruan J, Wang H, Hong F. The Acute Liver Injury in Mice Caused by Nano-Anatase TiO2. Nanoscale Res. Lett. (2009) 4:1275–85.

Malhi H, Gores GJ. Cellular and molecular mechanisms of liver injury. Gastroenterology (2008) 134(6):1641-54.

McColl SR, Clark-Lewis C. Inhibition of Murine Neutrophil Recruitment In Vivo by CXC Chemokine Receptor Antagonists. J. Immunol.  (1999)  163(5): 2829-2835.

McHedlidze T, Waldner M, Zopf S, Walker J, Rankin AL, Schuchmann M, Voehringer D, McKenzie AN, Neurath MF, Pflanz S, Wirtz S. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity  (2013) 39: 357–371.

Milani, S. et al. Differential expression of matrix-metalloproteinase-1 and -2 genes in normal and fibrotic human liver. Am. J. Pathol. (1994) 144(3): 528-537.

Miyamoto NG, Medburry PS, Hesselgesser J, Boehlk S, Nelson PJ, Krensky AM, Perez HD. Interleukin-1b induction of the chemokine RANTES promoter in the human astrocytoma line CH235 requires both constitutive and inducible transcription factors. J. Neuroimmunol. (2000) 105:78.

Nan YM, Kong LB, Ren WG,Wang RQ, Du JH, Wen-Cong L, Zhao SX, Zhang YG, Wu WJ, Di HL, Li Y, Yu J. Activation of peroxisome proliferator activated receptor alpha ameliorates ethanol mediated liver fibrosis in mice. Lipids Health Dis. (2013) 12:11.

Narumi S, Wyner L, Stoler MH, Tannenbaum CS, Hamilton TA. Tissue-specific expression of murine IP-10 mRNA following systemic treatment with interferon g. J. Leukoc. Biol. (1992) 52:27.

Natajaran SK, Thomas S, Ramamoorthy P, Basivireddy J, Pulimood AB, Ramachandran A, Balasubramanian KA. Oxidative stress in the development of liver cirrhosis: a comparison of two different experimental models. J. Gastroenterol. Hepatol. (2006) 21(6): 947-957.

Nicotera P, Leist M, Ferrando-May E. Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol. Lett. (1998) 102-103: 139-142.

Nikiforou M, Kemp MW, van Gorp RH, Saito M, Newnham JP, Reynaert NL, Janssen LEW, Jobe AH, Kallapur SG, Kramer BW, Wolfs TG. Selective IL-1α exposure to the fetal gut, lung, and chorioamnion/skin causes intestinal inflammatory and developmental changes in fetal sheep. Lab. Invest. (2016) 96(1): 69–80.

Ono K, Kim SO, Han J. Susceptibility of lysosomes to rupture is a determinant for plasma membrane disruption in tumor necrosis factor alpha-induced cell death. Mol. Cell. Biol. (2003) 23: 665-76.

Ortiz BD, Krensky AM, Nelson PJ. Kinetics of transcription factors regulating the RANTES chemokine gene reveal a developmental switch in nuclear events during T-lymphocyte maturation. Mol. Cell. Biol. (1996) 16:202.

Ouedraogo G, Morliere P, Maziere C, Maziere JC, Santus R. Alteration of the Endocytotic Pathway by Photosensitization with Fluoroquinolones. Photochemistry and Photobiology, (2000) 72(4): 458–463.

Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups, Lancet. (1997) 349(9055) :825-832.

Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY, Dapito DH, Jang MK, Guenther ND, Mederacke I, Friedman R, Dragomir AC, Aloman C, Schwabe RF. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology (2013) 58:1461–1473.

Ramachandran R, Kakar S. Histological patterns in drug-induced liver disease. J. Clin. Pathol. (2009) 62(6): 481-492.

Reeves HL, Dack CL, Peak M, Burt AD, Day CP. Stress-activated protein kinases in the activation of rat hepatic stellate cells in culture. J. Hepatol.  (2000) 32: 465-472.

Reiners J, Caruso J, Mathieu P, Chelladurai B, Yin X-M, Kessel D. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves bid cleavage. Cell death and differentiation. (2002) 9(9):934-944.

Repnik U, Stoka V, Turk V, Turk B. Lysosomes and lysosomal cathepsins in cell death. Biochim. Biophys. Acta. (2012) 1824(1):22-33.

Repnik U, Borg Distefano M,  Speth MT, Ng MYW, Progida C, Hoflack B, Gruenberg J, Griffiths G. L-leucyl-L-leucine methyl ester does not release cysteine cathepsins to the cytosol but inactivates them in transiently permeabilized lysosomes. J. Cell Sci. (2017) 130: 3124–3140.

Richter C, Schweizer M, Cossarizza A, Franceschi C. Control of apoptosis by the cellular ATP level. FEBS Lett. (1996) 378: 107-110.

Roberg K, Johansson U, Ollinger K. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic. Biol. Med. (1999) 27(11-12): 1228–1237.

Roberg K, Kagedal K, Ollinger K. Microinjection of cathepsin d induces caspase-dependent apoptosis in fibroblasts. Am. J. Pathol. (2002) 161:89–96.

Rockey DC, Boyles JK, Gabbiani G, Friedman SL. Rat hepatic lipocytes express smooth muscle actin upon activation in vivo and in culture. J. Submicrosc. Cytol. Pathol. (1992) 24(2):193-203.

Rockey DC, Friedman SL. Hepatic fibrosis and cirrhosis, Zakim and Boyer's Hepatology (2006)5:87-109.

Rouhiainen A, Tumova S, Valmu L, Kalkkinen N, Rauvala H. Analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J. Leukoc. Biol. (2007) 81:49–58.

Safadi R, Friedman SL. Hepatic fibrosis--role of hepatic stellate cell activation. Med. Gen. Med.  . (2002) 4(3): 27.

Santibañez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin. Sci. (Lond) (2011) 121(6): 233-251.

Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature (2002) 418:191–5.

Schwarz M, Jandová K, Struk I, Marešová D, Pokorný J, Riljak V. Low dose domoic acid influences spontaneous behavior in adult rats. Physiol. Res. (2014) 63: 369-76.

Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, Schwabe RF. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat. Med. (2007) 13:1324–32.

Soliman MM, Attia HF, Hussein MM. Protective Effect of N-Acetylcystiene Against Titanium Dioxide Nanoparticles Modulated Immune Responses in Male Albino Rats. Am. J. Immunol. (2013) 9:148–158.

Son G, Hines IN, Lindquist J, Schrum LW, Rippe RA. Inhibition of phosphatidylinositol 3-kinase signaling in hepatic stellate cells blocks the progression of hepatic fibrosis, Hepatology, (2009) 50(5): 1512–1523.

Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SL, Ellerby LM, Bredesen D, Freeze H, Abrahamson M, BroÈmme D, Krajewski S, Reed JC, Yin XM, Turk V, Salvesen GS. Lysosomal protease pathways to apoptosis: cleavage of Bid, not pro-caspases, is the most likely route. J. Biol. Chem. (2001) 276: 3149 - 3157.

Sun Y, Zhu D, Wang G, Wang D, Zhou H, Liu X, Jiang M, Liao L, Zhou Z, Hu J. Pro-Inflammatory Cytokine IL-1β Up-Regulates CXC Chemokine Receptor 4 via Notch and ERK Signaling Pathways in Tongue Squamous Cell Carcinoma. PLoS One. (2015) 10(7):e0132677.

Villamil Giraldo AM, Fyrner T, Wennmalm S, Parikh AN, Öllinger K, Ederth T. Spontaneous Vesiculation and pH-Induced Disassembly of a Lysosomotropic Detergent: Impacts on Lysosomotropism and Lysosomal Delivery. Langmuir (2016) 32: 13566−13575.

Wang F, Bexiga MG, Anguissola S, Boya P, Simpson JC, Salvati A, Dawson KA. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale (2013) 5:10868–76.

Werneburg NW, Guicciardi ME, Bronk SF, Gores GJ. Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am. J. Physiol. Gastrointest. Liver Physiol. (2002) 283:G947–G956.

Winklhofer K, Haass C. Mitochondrial dysfunction in Parkinson's disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease (2010) 1802: 29-44.

Wu DM, Lu J, Zheng YL, Zhang YQ, Hu B, Cheng W, Zhang ZF, Li MQ. Small interfering RNA-mediated knockdown of protein kinase C zeta attenuates domoic acid-induced cognitive deficits in mice. Toxicol. Sci. (2012) 128: 209-222.

Yang ND, Tan SH, Ng S1, Shi Y, Zhou J, Tan KS, Wong WS, Shen HM. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J. Biol. Chem. (2014) 289(48):33425-41.

Yamada T, Fujieda S, Yanagi S, Yamamura H, Inatome R, Yamamoto H, Igawa H, Saito H. IL-1 induced chemokine production through the association of Syk with TNF receptor-associated factor-6 in nasal fibroblast lines. J. Immunol. (2001) 167(1):283-8.

Zhou Q, Liu C, Liu W, Zhang H, Zhang R, Liu J, Zhang J, Xu C, Liu L, Huang S, Chen L. Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis. Toxicol Sci. (2015) 143: 81-96.

Zimmermann K, Volkel D, Pable S, Lindner T, Kramberger F, Bahrami S, Scheiflinger F. Native versus recombinant high-mobility group B1 proteins: functional activity in vitro. Inflammation. (2004) 28:221–9.

Zimmermann HW, Seidler S, Nattermann J, Gassler N, Hellerbrand C, Zernecke A, Tischendorf JJ, Luedde T, Weiskirchen R, Trautwein C, Tacke F. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS One (2010) 5:e11049.

 

 


Appendix 1

List of MIEs in this AOP

Key Event Component

Process Object Action
endocytosis lysosomal membrane increased

AOPs Including This Key Event

AOP ID and Name Event Type
Aop:144 - Endocytic lysosomal uptake leading to liver fibrosis MolecularInitiatingEvent

Stressors

Name
nanoparticles
Ciprofloxacin
Norfloxacin
Chloroquine bis(phosphate)
artesunate
3-aminopropanal
o-methyl-serine dodecylamide hydrochloride (MSDH)
ROS

Biological Context

Level of Biological Organization
Molecular

Cell term

Cell term
eukaryotic cell

Evidence for Perturbation by Stressor


Overview for Molecular Initiating Event

Several well-known drugs have lysosomotropic abilities including chloroquine, the antipsychotics chlorpromazine, thioridazine, aripiprazole, the antidepressants desipramine, imipramine, and clomipramine, as well as fluoroquinolone antibiotics; another substance group are lysosomotropic detergents (Villamil Giraldo et al., 2014; Ouedraogo et al., 2000).

Fluoroquinolones such as lomefloxacin, norfloxacin,  BAYy 3118 and ciprofloxacin are lysosomotropic substances because of their Lewis acid–base properties characterized by pKa nearby neutrality (Ouedraogo et al. 2000). The anti-malarial and anti-inflammatory agent chloroquine is a basic lipophilic and therefore lysosomotropic compound that accumulates in lysosomes via pH partitioning (Ashoor et al. 2013). 3-aminopropanal has the structure of a weak lysosomotropic base, concentrates within the acidic vacuolar compartment and causes lysosomal rupture (Yu et al., 2003). Artesunate preferably accumulates in the lysosomes (Yang et al., 2014)

Most nanoscale macromolecules and molecular assemblies are internalized through endocytosis upon contact with the cell membrane. Intracellular trafficking of NPs following endocytosis has been reported to be mediated via the endosomal pathway through early endosomes, late endosomes and then lysosomes (Gilleron et al., 2013; Yang et al., 2013; Ng et al., 2015).  Verma and Stellacci showed that 3.4-nm gold NPs were taken up into macrophages via pinocytosis and 24 h after internalization they were found in lysosomes. This endocytic fate has also been observed for iron oxide NPs and fullerenes (Verma and Stellacci, 2010).

Jin et al. investigated the cytotoxicity of Nanotitanium dioxide TiO2 (an industrial material used as an additive in cosmetics, pharmaceuticals, and food colorants and able to penetrate the skin) in mouse fibroblast (L929) cells. They saw that TiO2 NPs were phagocytosed and encapsulated in the lysosomes (Jin et al. 2008).

The rate and mechanism of NP uptake are dependent on physiochemical causes related to the properties of the NPs and the cells, but also the local microenvironment (Zhang, 2015). Nanomaterial shape and size contribute significantly to their interaction with cells (Verma and Stellacci, 2010; Oh, 2014). Several reports showing that NPs of 20—50nm are taken up more rapidly than smaller or larger particles (Lu et al., 2009; Iversen et al., 2011; Dykman and Khlebtsov, 2014).

Other variables that could influence the uptake of a NP cargo include orientation, density and steric freedom of targeting ligands and surface groups (Cleal et al., 2013). Most NPs are first coated with serum proteins before they reach cell plasma membranes; endocytosis patterns of aggregated or agglomerated NPs differ from the one of individual NPs (Oh and Park, 2014).

Harush-Frenkel et al. compared the endocytosis into HeLa cells of NPs exposing either a negative or positive charge on their surface and found that the exposed charge significantly affected their ability to internalize as well as the cellular endocytosis mechanism utilized. Negatively charged NPs showed an inferior rate of endocytosis and did not utilize the clathrin-mediated endocytosis pathway, while positively charged NPs internalize rapidly primarily via clathrin-mediated pathways as well as macropinocytosis. When the clathrin-mediated endocytosis pathway is blocked positively charged NPs activate a compensatory endocytosis pathway that results in enhanced accumulation of NPs (Harush-Frenkel et al., 2007). In contrast, a higher uptake of negatively charged quantum dot NPs has been reported in HEK cells by Zhang and Monteiro-Riviere (2009).

Schuetz et al. demonstrated that positively charged SiNPs enter cells largely via dynamin 2-dependent caveolar internalization rather than clathrin-mediated endocytosis and accumulate in lysosomes (Schuetz et al., 2016).

Ng et al. have shown that the uptake of 20 nm size AuNPs in MRC5 lung fibroblasts and Chang liver cells was dependent upon clathrin-mediated endocytosis (Ng et al., 2014). Yang et al. studied the cellular uptake of ultra-small fluorescent gold nanoclusters (AuNCs) by HeLa cells and found that this energy-dependent process involved multiple mechanisms, with clathrin-mediated endocytosis and macropinocytosis appearing to play a significant role, whereas the caveolin-mediated pathway contributing only to a lesser extent (Yang et al., 2013). 

Gilleron et al. monitored the uptake of lipid NPs (LNPs) loaded with traceable siRNAs in different cell types in vitro and in mouse liver and found that LNPs enter cells by both constitutive and inducible pathways in a cell type-specific manner using clathrin-mediated endocytosis as well as macropinocytosis (Gilleron et al., 2013).

Saw et al. showed that the major uptake of confeito Au NP of 30 nm was both clathrin and caveolin mediated endocytosis, while for 60, 80 and 100 nm NP was via clathrin mediated pathway. Internalization by both clathrin and caveolin pathways explains higher cellular uptake of 30 nm Au NP compared to other ones (Saw et al., 2018). However, Brandenberger et al. showed that uptake of 30 nm citrate-cappedsphere Au NP was by a macroopinocytosis mechanism (Brandenberger et al., 2010).

It is obvious that not only size of NP, but also the surface property and shape are also important factors in the type of cellular uptake of NPs. As demonstrated earlier cationic NPs favor clathrin mediated endocytosis possibly due to electrostatic interaction with the cell surface receptors. However, not all the studies confirmed this preference of cationic NPs for clathrin mediated internalization. In contrast, caveolin mediated endocytosis occurs by interaction between hydrophobic group of NP with lipid raft on cell surface (Chakraborty and Jana, 2015). There is a connection between the endocytosis mechanism and the subcellular localization of the NPs. Clathrin mediated endocytosis leads to localization of NPs to the lysosome. Also, it has been found that if uptake of NPs occurs via both clathrin and lipid raft- mediated endocytosis, subcellular localization will also be mainly lysosomal. Caveolin mediated uptake of NPs is followed with formation of vesicles with neutral pH and transport to endoplasmic reticulum, Golgi apparatus or even nucleus (Rejman et al., 2005)



Domain of Applicability


Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens NCBI
rat Rattus norvegicus NCBI
mouse Mus musculus NCBI
Life Stage Applicability
Life Stage Evidence
All life stages
Sex Applicability
Sex Evidence
Unspecific

Endocytosis is an universal internalization route in eukaryotes (Dergai et al., 2016). In most animal cells, clathrin-coated pits and vesicles provide an efficient pathway for taking up specific macromolecules from the extracellular fluid (Cooper, 2000) and it is also a mechanism for uptaking extracellular molecules in plant cells (Fan et al., 2015).

The experimental studies have been done on mice in vivo, primary human and rat cells, and human and animal (rat, mouse)-derived cell lines (Harusch Fraenkel et al., 2007; Ng et al., 2015; Nadanaciva et al., 2011; Lu et al., 2017; Xie et al., 2007; Verma and Stellacci, 2010; Zhang and Monteiro-Riviere, 2009).


Key Event Description

Endocytosis was discovered by the Belgian Nobel laureate Christian De Duve in 1963.

Endocytosis is a form of active transport in which molecules are transported into the cell by engulfing them in an energy-using process. In endocytosis, the material to be internalized is surrounded by an area of plasma membrane, which then buds off inside the cell to form a vesicle containing the ingested material. The ingestion of large particles (generally >250 nm in diameter) is termed phagocytosis (cell eating); phagocytosis is actin-dependent and restricted to professional phagocytes. The non-specific receptor-independent process to internalize fluids and solutes is called  pinocytosis (cell drinking; via small vesicles of about 100 nm in diameter) and found in all cells (Cooper, 2000; Alberts et al., 2002; Oh and Park, 2014).

Receptor-mediated endocytosis can be clathrin-, and caveolin-dependent; these proteins mediate the invagination of the cell membrane.

The clathrin-mediated endocytotic pathway produces small (approx. 100 nm in diameter) vesicles coated with the cytosolic protein clathrin, forming clathrin-coated pits in the plasma membrane.

Caveolae-mediated endocytosis produces small (approximately. 50 nm in diameter) caveolae, flask-shape pits in the membrane coated with the protein caveolin, derived from lipid rafts (rigid membrane microdomains enriched with phospholipids, sphingolipids, and cholesterol). Clathrin- and caveolae-independent endocytosis is further sub-classified as Arf6- dependent, flotillin-dependent, Cdc42-dependent and RhoA-dependent endocytosis (Cleal et al., 2013; Villamil Giraldo et al., 2014; Iversen et al., 2011; Sahay et al., 2010; Kirkham and Parton, 2005; Mailaender and Landfester, 2009).

Vesicles rapidly lose their coats and fuse to form larger compartments, known as endosomes.

Early endosomes are the first compartment of the endocytic pathway and receive most types of vesicles coming from the cell surface. Endocytosed material is transferred to late endosomes and further to lysosomes, vacuoles of 1-2 µm in diameter containing hydrolytic enzymes in an acid milieu. Their main task is the degradation of ingested material (Villamil Giraldo et al., 2014).

Substances that are taken up selectively into lysosomes are called lysosomotropic agents (De Duve et al., 1974). These agents tend to have both lipophilic or amphiphilic compounds with basic moieties and accumulate in the acidic intracellular compartment, where they become protonated, therefore cannot diffuse back into the cytosol and accumulate within lysosomes, a phenomenon called "acid trapping" (Villamil Giraldo et al., 2014).

Although structurally and pharmacologically diverse, lysosomotropic compounds share certain

physicochemical properties, namely a ClogP > 2 (partition coefficient of the neutral species of a compound between octanol and water) and a basic pKa (the negative base-10 logarithm of the acid dissociation constant of a solution; the lower the pKa value, the stronger the acid) between 6.5 and 11 (Nadanaciva et al., 2010; Lu et al., 2017).

  


How it is Measured or Detected

  • Lysosomal Trapping assay: A fluorescent dye, LysoTracker Red DND-99, which accumulates in lysosomes, is used for detecting lysosomotropism. There is a gradual decrease in the LysoTracker staining with increasing concentrations of lysosomotropic compounds. This assay is commercially available (Nadanaciva et al., 2011).
  • The most widespread method for studying intracellular trafficking involves attaching different fluorescent probes to the protein and nanomaterial that allows analyzing distribution of colour or fluorescence resonance energy transfer (FRET) throughout the cell compartments. The advantage of such approach is that it allows using live cell imaging by confocal microscopy (Sahay et al., 2010).
  • Cells can be transfected with constructs containing proteins that reside in specific endocytosis vesicles or intracellular organelles, which are fused with fluorescent proteins, such as the Green Fluorescent Protein (GFP) (Sahay et al., 2010).
  • Apart from confocal microscopy, the electron microscopy is also highly useful as it allows visualizing nanomaterials coupled with electron dense labels in different vesicular structures under very high resolution. Atomic Force Microscopy (AFM) has also been used recently to demonstrate the interactions of nanomaterials with the cell membrane (Sahay et al., 2010).
  • Exclusion of specific endocytosis mechanisms is a distinct and powerful technique to elucidate endocytosis. This can be achieved, for example, using various pharmacologic inhibitors of endocytosis that include chemical or biological agents or cell mutants (Sahay et al., 2010).
  • Co-localization studies of nanomaterials with specific endocytosis markers and structures “pulse-chase” design: proteins, such as transferrin or cholera toxin B (CTB), with known trafficking pathways are exposed to cells simultaneously or before the nanomaterial (“pulse”) and their inclusion or exclusion from the same vesicles is detected at different time points (“chase”) (Sahay et al., 2010).
  • Another way of studying co-localization is immunocytochemistry applied to fixed cells. This method allows employing specific antibodies to different proteins present along the endocytic vesicles and organelles (Sahay et al., 2010).
  • Transmission electron microscopy (TEM) is an appropriate technique to use for visualizing NPs inside cells, since light microscopy fails to resolve them at a single particle level. TEM is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image (Brandenberger et al., 2010; Villamil Giraldo et al., 2016).
  • Fluorescence Correlation Spectroscopy is a correlation analysis of fluctuation of the fluorescence intensity (Villamil Giraldo et al., 2016).
  • Evaluation of NP cellular uptake by confocal laser scanning microscopy (CLSM). CLSM combines high-resolution optical imaging with depth selectivity which allows optical sectioning.  The CLSM works by passing a laser beam through a light source aperture which is focused by an objective lens into a small area on the surface of the sample and an image is built up pixel-by-pixel by collecting the emitted photons from the fluorophores in the sample (Harush-Frenkel et al., 2006; Zhang and Monteiro-Riviere, 2009).
  • Fluorescence-activated cell sorter (FACS) analysis of NP cellular uptake. FACS is a specialized type of flow cytometry. It provides a method for sorting a heterogeneous mixture of biological based upon the specific light scattering and fluorescent characteristics of each cell (Harush-Frenkel et al., 2006; Zhang and Monteiro-Riviere, 2009).
  • Quantitative cellular uptake of AuNPs was performed by inductively coupled plasma mass spectrometry (ICPMS), a type of mass spectrometry capable of detecting metals and several non-metals at very low concentrations. This is achieved by ionizing the sample with inductively coupled plasma and then using a mass spectrometer to separate and quantify those ions (Ng et al., 2015).
  • We describe a single-step density gradient subcellular fractionation method combined with fluorescent detection analysis that provides a new tool for characterisation of endocytic traffic of polymer therapeutics for an understanding of intracellular trafficking pathways (Manunta et al., 2007).

References

  • Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition New York: Garland Science; (2002).
  • Ashoor R, Yafawi R, Jessen B, Lu S. The Contribution of Lysosomotropism to Autophagy Perturbation. (2013) PLoS ONE 8(11): e82481
  • Brandenberger C, Clift MJ, Vanhecke D, Mühlfeld C, Stone V, Gehr P, Rothen-Rutishauser B. Intracellular imaging of nanoparticles: is it an elemental mistake to believe what you see? Part Fibre Toxicol. (2010) 7:15.
  • Brandenberger C,  Mühlfeld C,  Ali Z,  Lenz AG, Otmar Schmid,  Parak WJ, Gehr P,  Rothen-Rutishauser B. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles, Small. (2010) 6(15): 1669–1678.
  • Chakraborty A, Jana NR. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle,  J. Phys.  Chem.  Lett. (2015) 6(18): 3688-3697
  • Cleal K, He L, Watson PD, Jones AT. Endocytosis, intracellular traffic and fate of cell penetrating peptide based conjugates and nanoparticles, Curr Pharm Des. (2013)19(16):2878-94.
  • Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; (2000).
  • De Duve Ch, De Barsy T, Poole B, Trouet A, Tulkens P, van Hoof F. Lysosomotropic agents, Biochemical Pharmacology, (1974)  Volume 23, 18: 2495-2510.
  • Dergai M, Iershov A, Novokhatska O, Pankivskyi S, Rynditch A. Evolutionary Changes on the Way to Clathrin-Mediated Endocytosis in Animals, Genome Biol Evol. (2016) 8(3):588-606.
  • Doherty GJ, McMahon HT.  Mechanisms of endocytosis, Annu Rev Biochem. (2009) 78:857-902.
  • Fan L, Li R, Pan J3, Ding Z4, Lin J. Endocytosis and its regulation in plants, Trends Plant Sci. (2015) 20(6):388-97.
  • Dykman LA, Khlebtsov NG. Uptake of engineered gold nanoparticles into mammalian cells. Chem Rev. (2014) 114(2):1258-88.
  • Gilleron J, Querbes W, Zeigerer A, Borodovsky A, Marsico G, Schubert U, Manygoats K, Seifert S, Andree C, Stöter M, Epstein-Barash H, Zhang L, Koteliansky V, Fitzgerald K, Fava E, Bickle M, Kalaidzidis Y, Akinc A, Maier M, Zerial M. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape, Nat Biotechnol. (2013) 31(7):638-46.
  • Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway, Biochem Biophys Res Commun. (2007) 353(1):26-32.
  • Iversen TG, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies, Nanotoday, (2011) Volume 6, 2: 176-185.
  • Jin CY, Zhu BS, Wang XF, Lu QH. Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells, Chem Res Toxicol. (2008) 21(9):1871-7.
  • Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers, Biochim Biophys Acta. (2005) 1746(3):349-63.
  • Lu F, Wu SH, Hung Y, Mou CY. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles, Small. (2009) 5(12):1408-13.
  • Lu S, Sung T, Lin N, Abraham RT, Jessen BA. Lysosomal adaptation: How cells respond to lysosomotropic compounds. (2017) PLoS ONE 12(3): e0173771.
  • Mailänder V, Landfester K. Interaction of nanoparticles with cells, Biomacromolecules. (2009) 10(9):2379-400.
  • Manunta M, Izzo L, Duncan R, Jones AT. Establishment of subcellular fractionation techniques to monitor the intracellular fate of polymer therapeutics II. Identification of endosomal and lysosomal compartments in HepG2 cells combining single-step subcellular fractionation with fluorescent imaging. J Drug Target. (2007) 15(1):37-50.
  • Nadanaciva S, Lu S, Gebhard DF, Jessen BA, Pennie WD, Will Y. A high content screening assay for identifying lysosomotropic compounds, Toxicol In Vitro. (2011) 25(3):715-23.
  • Ng CT, Tang FM, Li JJ, Ong C, Yung LL, Bay BH. Clathrin-mediated endocytosis of gold nanoparticles in vitro, Anat Rec (Hoboken). (2015) 298(2):418-27.
  • Oh N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells, Int J Nanomedicine. (2014) 9 Suppl 1:51-63.
  • Ouedraogo G, Morliere P, Maziere C, Maziere JC, Santus R. Alteration of the Endocytotic Pathway by Photosensitization with Fluoroquinolones, Photochemistry and Photobiology, (2000) 72(4): 458–463.
  • Rejman  J, Bragonzi  A,Conese M. Role of Clathrin- and Caveolae-Mediated Endocytosis in Gene Transfer Mediated by Lipo- and Polyplexes Mol. Ther. (2005) (12): 468– 474.
  • Sahay G, Alakhova DY, Kabanov AV. Endocytosis of Nanomedicines, J Control Release. (2010) 145(3):182-95.
  • Saw WS,  Ujihara M,  Chong WY, Voon SH, Imae T,  Kiew L V,  Lee HB, Sim KS,  Chung LY. Size-dependent effect of cystine/citric acid-capped confeito-like gold nanoparticles on cellular uptake and photothermal cancer therapy, Colloids Surf B Biointerfaces. (2017) 161: 365–374.
  • Schütz I, Lopez-Hernandez T, Gao Q, Puchkov D, Jabs S, Nordmeyer D, Schmudde M, Rühl E, Graf CM, Haucke V. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles, J Biol Chem. (2016) 291(27):14170-84
  • van Nierop K, Muller FJ, Stap J, Van Noorden CJ, van Eijk M, de Groot C. Lysosomal destabilization contributes to apoptosis of germinal center B-lymphocytes, J Histochem Cytochem. (2006) 54(12):1425-35.
  • Verma A, Stellacci F. Effect of Surface Properties on Nanoparticle–Cell Interactions, Small. (2010) 6(1):12-21. 
  • Villamil Giraldo AM, Appelqvist H, Ederth T, Öllinger K. Lysosomotropic agents: impact on lysosomal membrane permeabilization and cell death, Biochem Soc Trans. (2014) 42(5):1460-4.
  • Villamil Giraldo AM, Fyrner T, Wennmalm S, Parikh AN, Öllinger K, Ederth T. Spontaneous Vesiculation and pH-Induced Disassembly of a Lysosomotropic Detergent: Impacts on Lysosomotropism and Lysosomal Delivery, Langmuir (2016) 32: 13566−13575.
  • Xie J, Xu Ch, Kohler N, Hou Y, Sun S. Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells, Adv. Mater. (2007) 19: 3163–3166.
  • Yang L, Shang L, Nienhaus GU. Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells, Nanoscale. (2013) 5(4):1537-43.
  • Yang ND, Tan SH, Ng S1, Shi Y, Zhou J, Tan KS, Wong WS, Shen HM. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin, J Biol Chem. (2014) 289(48):33425-41.
  • Yu Z, Li W, Brunk UT. 3-Aminopropanal is a lysosomotropic aldehyde that causes oxidative stress and apoptosis by rupturing lysosomes, APMIS.  82003) 111(6):643-52.
  • Zhang LW, Monteiro-Riviere NA. Mechanisms of quantum dot nanoparticle cellular uptake, Toxicol Sci. (2009) 110(1):138-55.
  • Zhang S, Gao H, Bao G. Physical Principles of Nanoparticle Cellular Endocytosis, ACS Nano. (2015) 9(9):8655-71.

     

     


List of Key Events in the AOP

Event: 898: Disruption, Lysosome

Short Name: Disruption, Lysosome

Key Event Component

Process Object Action
organelle disassembly lysosome occurrence

Biological Context

Level of Biological Organization
Cellular

Domain of Applicability


Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens High NCBI
mouse Mus musculus High NCBI
Life Stage Applicability
Life Stage Evidence
All life stages
Sex Applicability
Sex Evidence
Unspecific

Typically, human or murine cell lines are used to assess this event. Examples are

 murine (Reiners et al., 2002)

murine, human (Li et al., 2000)

murine, human (Ghosh et al., 2011)

human (Loos et al., 2014)

human, murine (Anguissola et al., 2014)

human (Hamacher-Brady et al., 2011)

 


Key Event Description

Lysosomes were first described in 1955 (de Duve et al., 1955). They are acidic, single-membrane bound organelles that are present in all eukaryotic cells and are filled with more than 50 acid hydrolases to serve their purpose of degrading macromolecules (Johansson et al., 2010).

Lysosomes are the terminal organelle of the endocytic pathway, but are also involved in membrane repair and other cellular processes, such as immune responses (Repnik and Turk, 2010). There are numerous substances that can provoke increased permeability of lysosomal membrane or total lysosomal rupture, and as a consequence release of lysosomal enzymes. Among lysosomal enzymes, one of the major roles has cathepins. There are 11 cysteine cathepins in humans, B, C, F, H, K, L, O, S, V, W and X. Activation of proenzymes usually occurs within the lysosomes (Ishidoh and Kominami, 2002), therefore, the enzymes escaping from the lysosomes are in their active form. The amount of lysosomal enzymes that are released into the cytosol regulates the cell death pathway which is initiated by lysosomal damage: controlled increased permeability of lysosomal membrane, caused by limited level of stress, plays a vital role in the induction of apoptosis, whereas massive lysosomal rupture, caused by high stress levels, leads to necrosis (Bursch, 2001; Guicciardi et al., 2004). Lysosomes are known to be involved in external as well as internal apoptotic pathways. The external pathway triggers lysosomal destabilization by hydroxyl radicals, p53, and caspase 8, through activation of Bax or by ceramide which is converted into sphingosine (Terman et al., 2004). The internal apoptotic pathway on the contrary is activated through mitochondrial damage, for example via activation of Bax or Bid, phospholipases, or lysosomal enzymes (Terman et al., 2004). It has been shown that lack of cathepsin B prevents increased lysosomal membrane permeability in hepatocytes treated with TNF or sphingosine (Werneburg et al., 2002). This indicates that cathepsins can also have a role in initiation of increased lysosomal membrane permeabilization.

The lysosome contains redox-active labile irons which are suggested to be involved in local ROS production via a Fenton-type reaction (Kubota et al., 2010). It has been shown that lysosomal membrane disruption induced by lysosomotropic detergents causes early induction of lysosomal cathepsin B and D and induction of ferritin, together with an increase of cellular ROS and concomitant reduction of the antioxidants MnSOD (manganese superoxide dismutase) and GSH (glutathione), possibly due to the release of free iron into the cytosol (Ghosh et al., 2011; Hamacher-Brady et al., 2011).

The list of agents able to destabilize lysosomal membrane includes L-Leucyl-L-leucinemethyl ester (LLOMe) (Goldman and Kaplan, 1973; Uchimoto et al. 1999; Droga-Mazovec et al., 2008),  N-dodecylimidazole (NDI) (Wilson et al., 1987), sphingosine (Kagedal et al., 2001), detergent MSDH (Li et al., 2000), siramesine (Ostenfeld et al., 2005), the quinolone antibiotics ciprofloxacin and norfloxacin (Boya et al., 2003a),  hydroxychloroquine (Boya et al., 2003b) and NPs (Wang et al., 2018).

Cirman et al. showed that the lysosomotropic agent LLOMe inducing the disruption of lysosomes results in translocation of lysosomal proteases to the cytosol and induce apoptosis through a caspase dependent mechanism (Cirman et al., 2004). However, it has been proven that partially increased permeabilization of lysosome leads to apoptosis, while complete breakdown of the lysosome with release of high concentrations of the enzymes into the cytosol results in necrosis (Bursch, 2001; Kurz et al., 2008).

The short-term exposure to low concentrations of H2O2 induce lysosomal rupture by activation of phospholipase A2, which cause a progressive destabilization of the membranes of intracellular organelles degrading the membrane phospholipids (Zhao et al., 2001). Sumoza-Toledo and Penner showed that ROS activate lysosomal Ca2+ channels and contribute to increased lysosomal permeability (Sumoza-Toledo and Penner, 2011).  

Considering nanomaterials (NMs) as a trigger for lysosomal damage, recent studies underpinned the importance of lysosomal NM uptake for NM-induced toxicity. Once the material is taken up by a cell and transported to the lysosome by autophagy, the acidic milieu herein can either enhance solubility of a NM, or the material remains in its initial nano form. Both situations can induce toxicity, causing lysosomal swelling, followed by lysosomal disruption and the release of pro-apoptotic proteins (Wang et al., 2013; Cho et al., 2011; Cho et al., 2012). Wang et al. showed that the exposure of cells to NH2-PS NPs results in increased lysosomal membrane permeability and release of lysosomal proteasis (cathepsin B and cathepsin D) into cytosol (Wang et al., 2018).  


How it is Measured or Detected

Lysosomes are typically analysed microscopically, usually with fluorescence microscopy (Kagedal et al., 2001).  

Changes in morphology can be observed by using acridine orange (AO), a weak base that accumulates in the acidic compartment of the cell mainly composed of lysosomes. Red fluorescence is exhibited when it is highly concentrated in acidic vesicles, while green fluorescence is exhibited when it's less concentrated in other parts of the cell (Li et al., 2000; Reiners et al., 2002; Kroemer and Jäättelä, 2005). This is followed by flow cytometry (Zhao et al., 2001), static cytofluometry or flow cytofluometry (Antunes et al., 2001).

Lysotracker green (200 nM) is regularly used to assess lysosomal acidification; Anguissola and colleagues reported that it was excited through a 475+/240 nm band pass filter and fluorescence emission was collected through a 515+/220 nm band pass filter. Analysis is performed using microscopical methods such as High Content Analysis (Anguissola et al., 2014). This method as well as use of LysoSensor probes has been reported repeatedly elsewhere, for example (Wang et al., 2013; Kroemer and Jäättelä, 2005). 

More specific staining can be achieved by staining with antibodies against lysosomal membrane proteins (Kroemer and Jäättelä, 2005). 

Lysosomal membrane permeabilization can be visualized by immunostaining of lysosomal enzymes such as cathepsin B (Boya et al. 2003a).


References

Anguissola S, Garry D, Salvati A, O'Brien PJ, Dawson KA. High content analysis provides mechanistic insights on the pathways of toxicity induced by amine-modified polystyrene nanoparticles. PLoS One. (2014) 9(9):e108025.

Antunes F, Cadenas E, Brunk UT. Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochemical Journal. (2001) 356(Pt 2):549-555.

Boya P,  Andreau K, Poncet D,  Zamzami N, Perfettini JL, Metivier D, Ojcius DM,  Jäättelä M, Kroemer G. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion, J. Exp. Med. (2003) 197:1323–1334.

Boya P, Gonzalez-Polo RA, Poncet D,  Andreau K, Vieira HL,  Roumier T, Perfettini JL, Kroemer G. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine, Oncogene (2003) 22:3927–3936.

Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ. (2001) 8(6):569-81.

Cho W-S, Duffin R, Howie SEM, Scotton CJ, Wallace WAH, Macnee W, Bradley M, Megson IL, Donaldson K. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol (2011) 8:27.

Cho W-S, Duffin R, Thielbeer F, Bradley M, Megson IL, MacNee W, Poland CA, Tran CL, Donaldson K. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci (2012) 126:469–477.

Cirman T, Oresić K, Droga-Mazovec G, Turk V, Reed JC, Myers RM, Salvesen GS, Turk B. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem. (2004) 279(5): 3578–3587.

de Duve C, Pressman BC, Gianetto R, Wattiaux R, Applemans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. (1955) 60(4):604-17.

Droga-Mazovec G, Bojič L, Petelin A, Ivanova S, Romih R, Repnik U, Salvesen GS, Stoka V, Turk V, Turk B. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues, J. Biol. Chem. (2008) 283:19140–19150.

Ghosh M, Carlsson F, Laskar A, Yuan XM, Li W. Lysosomal membrane permeabilization causes oxidative stress and ferritin induction in macrophages. FEBS Lett. (2011) 585(4):623-9.

Goldman R, Kaplan A. Rupture of rat liver lysosomes mediated by L-amino acid esters, Biochim. Biophys. Acta  1973, 318: 205–216.

Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene. (2004) 23(16):2881-90.

Hamacher-Brady A, Stein HA, Turschner S, Toegel I, Mora R, Jennewein N, Efferth T, Eils R, Brady NR. Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production. J Biol Chem. (2011) 286(8):6587-601.

Ishidoh K, Kominami E. Processing and activation of lysosomal proteinases. Biol Chem. (2002)  383(12): 1827–1831.

Johansson AC, Appelqvist H, Nilsson C, Kågedal K, Roberg K, Ollinger K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis. (2010) 15(5):527-40.

Kagedal K, Zhao M, Svensson I, Brunk UT. Sphingosine-induced apoptosis is dependent on lysosomal proteases. The Biochemical journal.  (2001) 359:335-43.

Kroemer G, Jäättelä M. Lysosomes and autophagy in cell death control. Nat Rev Cancer. (2005) 5(11):886-97.

Kubota C, Torii S, Hou N, Saito N, Yoshimoto Y, Imai H, Takeuchi T. Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J Biol Chem. (2010) 285(1):667-74.

Kurz T, Terman A, Gustafsson B, Brunk  UT.  Lysosomes in iron metabolism, ageing and apoptosis. Histochem. Cell Biol. (2008) 129: 389-406.

Li W, Yuan X, Nordgren G, Dalen H, Dubowchik GM, Firestone RA, Brunk UT. Induction of cell death by the lysosomotropic detergent MSDH, FEBS Lett. (2000) 470:35–39.

Loos C, Syrovets T, Musyanovych A, Mailänder V, Landfester K, Nienhaus GU, Simmet T. Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions. Beilstein J Nanotechnol. (2014) 5:2403-12.

Ostenfeld MS, Fehrenbacher N, Høyer-Hansen M, Thomsen C,  Farkas T,  Jäättelä M. Effective tumor cell death by sigma-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress, Cancer Res. (2005) 65:8975–8983.

Reiners J, Caruso J, Mathieu P, Chelladurai B, Yin X-M, Kessel D. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves bid cleavage. Cell death and differentiation. (2002) 9(9):934-944.

Repnik U, Turk B. Lysosomal-mitochondrial cross-talk during cell death. Mitochondrion. (2010) 10(6):662-9.

Sumoza-Toledo A, Penner R. TRPM2: a multifunctional ion channel for calcium signalling. J. Physiol. (2011) 589:1515-1525.

Terman A, Kurz T, Navratil M, Arriaga EA, Brunk UT. Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal. (2010) 12(4):503-35.

Uchimoto T, Nohara H, Kamehara R, Iwamura M, Watanabe N, Kobayashi Y. Mechanism of apoptosis induced by a lysosomotropic agent, L-Leucyl-L-Leucine methyl ester, Apoptosis (1999) 4:357–362.

Wang F, Bexiga MG, Anguissola S, Boya P, Simpson JC, Salvati A, Dawson KA: Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale (2013) 5:10868–76.

Wang F, Salvati A, Boya P. Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biol. (2018) 8(4): 170271.

Werneburg NW, Guicciardi ME, Bronk SF, Gores GJ. Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am J Physiol Gastrointest Liver Physiol. (2002) 283:G947–G956.

Wilson PD, Firestone RA, Lenard J. The role of lysosomal enzymes in killing of mammalian cells by the lysosomotropic detergent N-dodecylimidazole, J. Cell. Biol. (1987) 104:1223–1229.

Zhao M, Brunk UT, Eaton JW. Delayed oxidant-induced cell death involves activation of phospholipase A2. FEBS Lett. (2001) 509:399–404.

Zhao M, Eaton JW,  Brunk UT. Bcl-2 phosphorylation is required for inhibition of oxidative stress induced lysosomal leak and ensuing apoptosis. FEBS Lett. (2001) 509: 405–412.

 


Event: 177: N/A, Mitochondrial dysfunction 1

Short Name: N/A, Mitochondrial dysfunction 1

Key Event Component

Process Object Action
mitochondrion functional change

AOPs Including This Key Event


Biological Context

Level of Biological Organization
Cellular

Cell term

Cell term
eukaryotic cell

Domain of Applicability


Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens High NCBI
mouse Mus musculus High NCBI
rat Rattus norvegicus High NCBI
Life Stage Applicability
Life Stage Evidence
All life stages
Sex Applicability
Sex Evidence
Unspecific

Mitochondrial dysfunction is a universal event occurring in cells of any species (Farooqui and Farooqui, 2012). Many invertebrate species (drosophila, C, elegans) are considered as potential models to study mitochondrial function. New data on marine invertebrates, such as molluscs and crustaceans and non-Drosophila species, are emerging (Martinez-Cruz et al., 2012). Mitochondrial dysfunction can be measured in animal models used for toxicity testing (Winklhofer and Haass, 2010; Waerzeggers et al., 2010) as well as in humans (Winklhofer and Haass, 2010).


Key Event Description

Mitochondrial dysfunction is a consequence of inhibition of the respiratory chain leading to oxidative stress.

Mitochondria can be found in all cells and are considered the most important cellular consumers of oxygen. Furthermore, mitochondria possess numerous redox enzymes capable of transferring single electrons to oxygen, generating the superoxide (O2-). Some mitochondrial enzymes that are involved in reactive oxygen species (ROS) generation include the electron-transport chain (ETC) complexes I, II and III; pyruvate dehydrogenase (PDH) and glycerol-3-phosphate dehydrogenase (GPDH). The transfer of electrons to oxygen, generating superoxide, happens mainly when these redox carriers are charged enough with electrons and the potential energy for transfer is elevated, like in the case of high mitochondrial membrane potential. In contrast, ROS generation is decreased if there are not enough electrons and the potential energy for the transfer is not sufficient (reviewed in Lin and Beal, 2006).

Cells are also able to detoxify the generated ROS due to an extensive antioxidant defence system that includes superoxide dismutases, glutathione peroxidases, catalase, thioredoxins, and peroxiredoxins in various cell organelles (reviewed in Lin and Beal, 2006). It is worth mentioning that, as in the case of ROS generation, antioxidant defences are also closely related to the redox and energetic status of mitochondria. If mitochondria are structurally and functionally healthy, an antioxidant defence mechanism balances ROS generation, and there is not much available ROS production. However, in case of mitochondrial damage, the antioxidant defence capacity drops and ROS generation takes over. Once this happens, a vicious cycle starts and ROS can further damage mitochondria, leading to more free-radical generation and further loss of antioxidant capacity. During mitochondrial dysfunction the availability of ATP also decreases, which is considered necessary for repair mechanisms after ROS generation.

A number of proteins bound to the mitochondria or endoplasmic reticulum (ER), especially in the mitochondria-associated ER membrane (MAM), are playing an important role of communicators between these two organelles (reviewed Mei et al., 2013). ER stress induces mitochondrial dysfunction through regulation of Ca2+ signaling and ROS production (reviewed Mei et al., 2013). Prolonged ER stress leads to release of Ca2+ at the MAM and increased Ca2+ uptake into the mitochondrial matrix, which induces Ca2+-dependent mitochondrial outer membrane permeabilization and apoptosis. At the same, ROS are produced by proteins in the ER oxidoreductin 1 (ERO1) family. ER stress activates ERO1 and leads to excessive production of ROS, which, in turn, inactivates SERCA and activates inositol-1,4,5- trisphosphate receptors (IP3R) via oxidation, resulting in elevated levels of cytosolic Ca2+, increased mitochondrial uptake of Ca2+, and ultimately mitochondrial dysfunction. Just as ER stress can lead to mitochondrial dysfunction, mitochondrial dysfunction also induces ER Stress (reviewed Mei et al., 2013). For example, nitric oxide disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca2+ flux which induce ER stress. Increased Ca2+ flux triggers loss of mitochondrial membrane potential (MMP), opening of mitochondrial permeability transition pore (MPTP), release of cytochrome c and apoptosis inducing factor (AIF), decreasing ATP synthesis and rendering the cells more vulnerable to both apoptosis and necrosis (Wang and Qin, 2010).

Summing up: Mitochondria play a pivotal role in cell survival and cell death because they are regulators of both energy metabolism and apoptotic/necrotic pathways (Fiskum, 2000; Wieloch, 2001; Friberg and Wieloch, 2002). The production of ATP via oxidative phosphorylation is a vital mitochondrial function (Kann and Kovács, 2007; Nunnari and Suomalainen, 2012). The ATP is continuously required for signalling processes (e.g. Ca2+ signalling), maintenance of ionic gradients across membranes, and biosynthetic processes (e.g. protein synthesis, heme synthesis or lipid and phospholipid metabolism) (Kang and Pervaiz, 2012), and (Green, 1998; McBride et al., 2006). Inhibition of mitochondrial respiration contributes to various cellular stress responses, such as deregulation of cellular Ca2+ homeostasis (Graier et al., 2007) and ROS production (Nunnari and Suomalainen, 2012; reviewed Mei et al., 2013).). It is well established in the existing literature that mitochondrial dysfunction may result in: (a) an increased ROS production and a decreased ATP level, (b) the loss of mitochondrial protein import and protein biosynthesis, (c) the reduced activities of enzymes of the mitochondrial respiratory chain and the Krebs cycle, (d) the loss of the mitochondrial membrane potential, (e) the loss of mitochondrial motility, causing a failure to re-localize to the sites with increased energy demands (f) the destruction of the mitochondrial network, and (g) increased mitochondrial Ca2+ uptake, causing Ca2+ overload (reviewed in Lin and Beal, 2006; Graier et al., 2007), (h) the rupture of the mitochondrial inner and outer membranes, leading to (i) the release of mitochondrial pro-death factors, including cytochrome c (Cyt. c), apoptosis-inducing factor, or endonuclease G (Braun, 2012; Martin, 2011; Correia et al., 2012; Cozzolino et al., 2013), which eventually leads to apoptotic, necrotic or autophagic cell death (Wang and Qin, 2010). Due to their structural and functional complexity, mitochondria present multiple targets for various compounds.


How it is Measured or Detected

Mitochondrial dysfunction can be detected using isolated mitochondria, intact cells or cells in culture as well as in vivo studies. Such assessment can be performed with a large range of methods (revised by Brand and Nicholls, 2011) for which some important examples are given. All approaches to assess mitochondrial dysfunction fall into two main categories: the first assesses the consequences of a loss-of-function, i.e. impaired functioning of the respiratory chain and processes linked to it. Some assay to assess this have been described for KE1, with the limitation that they are not specific for complex I. In the context of overall mitochondrial dysfunction, the same assays provide useful information, when performed under slightly different assay conditions (e.g. without addition of complex III and IV inhibitors). The second approach assesses a ‘non-desirable gain-of-function’, i.e. processes that are usually only present to a very small degree in healthy cells, and that are triggered in a cell, in which mitochondria fail.

I. Mitochondrial dysfunction assays assessing a loss-of function.

1. Cellular oxygen consumption.

See KE1 for details of oxygen consumption assays. The oxygen consumption parameter can be combined with other endpoints to derive more specific information on the efficacy of mitochondrial function. One approach measures the ADP-to-O ratio (the number of ADP molecules phosphorylated per oxygen atom reduced (Hinkle, 1995 and Hafner et al., 1990). The related P/O ratio is calculated from the amount of ADP added, divided by the amount of O2 consumed while phosphorylating the added ADP (Ciapaite et al., 2005; Diepart et al., 2010; Hynes et al., 2006; James et al., 1995; von Heimburg et al., 2005).

2. Mitochondrial membrane potential (Δψm ).

The mitochondrial membrane potential (Δψm) is the electric potential difference across the inner mitochondrial membrane. It requires a functioning respiratory chain in the absence of mechanisms that dissipate the proton gradient without coupling it to ATP production. The classical, and still most quantitative method uses a tetraphenylphosphonium ion (TPP+)-sensitive electrode on suspensions of isolated mitochondria. The Δψm can also be measured in live cells by fluorimetric methods. These are based on dyes which accumulate in mitochochondria because of Δψm. Frequently used are tetramethylrhodamineethylester (TMRE), tetramethylrhodaminemethyl ester (TMRM) (Petronilli et al., 1999) or 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazole carbocyanide iodide (JC-1). Mitochondria with intact membrane potential concentrate JC-1, so that it forms red fluorescent aggregates, whereas de-energized mitochondria cannot concentrate JC-1 and the dilute dye fluoresces green (Barrientos et al., 1999). Assays using TMRE or TMRM measure only at one wavelength (red fluorescence), and depending on the assay setup, de-energized mitochondria become either less fluorescent (loss of the dye) or more fluorescent (attenuated dye quenching).

3. Enzymatic activity of the electron transport system (ETS).

Determination of ETS activity can be dene following Owens and King's assay (1975). The technique is based on a cell-free homogenate that is incubated with NADH to saturate the mitochondrial ETS and an artificial electron acceptor [l - (4 -iodophenyl) -3 - (4 -nitrophenyl) -5-phenylte trazolium chloride (INT)] to register the electron transmission rate. The oxygen consumption rate is calculated from the molar production rate of INT-formazan which is determined spectrophotometrically (Cammen et al., 1990).

4. ATP content.

For the evaluation of ATP levels, various commercially-available ATP assay kits are offered  based on luciferin and luciferase activity. For isolated mitochondria various methods are available to continuously measure ATP with electrodes (Laudet 2005), with luminometric methods, or for obtaining more information on different nucleotide phosphate pools (e.g. Ciapaite et al., (2005).


II. Mitochondrial dysfunction assays assessing a gain-of function.


1. Mitochondrial permeability transition pore opening (PTP).

The opening of the PTP is associated with a permeabilization of mitochondrial membranes, so that different compounds and cellular constituents can change intracellular localization. This can be measured by assessment of the translocation of cytochrome c, adenylate kinase or AIF from mitochondria to the cytosol or nucleus. The translocation can be assessed biochemically in cell fractions, by imaging approaches in fixed cells or tissues or by life-cell imaging of GFP fusion proteins (Single 1998; Modjtahedi 2006). An alternative approach is to measure the accessibility of cobalt to the mitochondrial matrix in a calcein fluorescence quenching assay in live permeabilized cells (Petronilli et al., 1999).

2. mtDNA damage as a biomarker of mitochondrial dysfunction.

Various quantitative polymerase chain reaction (QPCR)-based assays have been developed to detect changes of DNA structure and sequence in the mitochondrial genome. mtDNA damage can be detected in blood after low-level rotenone exposure, and the damage persists even after CI activity has returned to normal. With a more sustained rotenone exposure, mtDNA damage is also detected in skeletal muscle. These data support the idea that mtDNA damage in peripheral tissues in the rotenone model may provide a biomarker of past or ongoing mitochondrial toxin exposure (Sanders et al., 2014a and 2014b).

3. Generation of ROS and resultant oxidative stress.

a. General approach. Electrons from the mitochondrial ETS may be transferred ‘erroneously’ to molecular oxygen to form superoxide anions. This type of side reaction can be strongly enhanced upon mitochondrial damage. As superoxide may form hydrogen peroxide, hydroxyl radicals or other reactive oxygen species, a large number of direct ROS assays and assays assessing the effects of ROS (indirect ROS assays) are available (Adam-Vizi, 2005; Fan and Li 2014). Direct assays are based on the chemical modification of fluorescent or luminescent reporters by ROS species. Indirect assays assess cellular metabolites, the concentration of which is changed in the presence of ROS (e.g. glutathione, malonaldehyde, isoprostanes,etc.) At the animal level the effects of oxidative stress are measured from biomarkers in the blood or urine.

b. Measurement of the cellular glutathione (GSH) status. GSH is regenerated from its oxidized form (GSSH) by the action of an NADPH dependent reductase (GSSH + NADPH + H+ à 2 GSH + NADP+). The ratio of GSH/GSSG is therefore a good indicator for the cellular NADH+/NADPH ratio (i.e. the redox potential). GSH and GSSH levels can be determined by HPLC, capillary electrophoresis, or biochemically with DTNB (Ellman’s reagent). As excess GSSG is rapidly exported from most cells to maintain a constant GSH/GSSG ratio, a reduction of total glutathione (GSH/GSSG) is often a good surrogate measure for oxidative stress.

c. Quantification of lipid peroxidation. Measurement of lipid peroxidation has historically relied on the detection of thiobarbituric acid (TBA)-reactive compounds such as malondialdehyde generated from the decomposition of cellular membrane lipid under oxidative stress (Pryor et al., 1976). This method is quite sensitive, but not highly specific. A number of commercial assay kits are available for this assay using absorbance or fluorescence detection technologies. The formation of F2-like prostanoid derivatives of arachidonic acid, termed F2-isoprostanes (IsoP) has been shown to be more specific for lipid peroxidation. A number of commercial ELISA kits have been developed for IsoPs, but interfering agents in samples requires partial purification before analysis. Alternatively, GC/MS may be used, as robust (specific) and sensitive method.


d. Detection of superoxide production. Generation of superoxide by inhibition of complex I and the methods for its detection are described by Grivennikova and Vinogradov (2014). A range of different methods is also described by BioTek (http://www.biotek.com/resources/articles/reactive-oxygen-species.html). The reduction of ferricytochrome c to ferrocytochrome c may be used to assess the rate of superoxide formation (McCord, 1968). Like in other superoxide assays, specificity can only be obtained by measurements in the absence and presence of superoxide dismutase. Chemiluminescent reactions have been used for their increased sensitivity. The most widely used chemiluminescent substrate is lucigenin. Coelenterazine has also been used as a chemiluminescent substrate. Hydrocyanine dyes are fluorogenic sensors for superoxide and hydroxyl radical, and they become membrane impermeable after oxidation (trapping at site of formation). The best characterized of these probes are Hydro-Cy3 and Hydro-Cy5. generation of superoxide in mitochondria can be visualized using fluorescence microscopy with MitoSOX™ Red reagent (Life Technologies). MitoSOX™ Red reagent is a cationic derivative of dihydroethidium that permeates live cells and accumulates in mitochondria.

e. Detection of hydrogen peroxide (H2O2) production. There are a number of fluorogenic substrates, which serve as hydrogen donors that have been used in conjunction with horseradish peroxidase (HRP) enzyme to produce intensely fluorescent products in the presence of hydrogen peroxide (Zhou et al., 1997: Ruch et al., 1983). The more commonly used substrates include diacetyldichloro-fluorescein, homovanillic acid, and Amplex® Red. In these examples, increasing amounts of H2O2 form increasing amounts of fluorescent product (Tarpley et al., 2004).

Summing up, mitochondrial dysfunction can be measured by: • ROS production: superoxide (O2-), and hydroxyl radicals (OH−) • Nitrosative radical formation such as ONOO− or directly by: • Loss of mitochondrial membrane potential (MMP) • Opening of mitochondrial permeability transition pores (MPTP) • ATP synthesis • Increase in mitochondrial Ca2+ • Cytochrome c release • AIF (apoptosis inducing factor) release from mitochondria • Mitochondrial Complexes enzyme activity • Measurements of mitochondrial oxygen consumption • Ultrastructure of mitochondria using electron microscope and mitochondrial fragmentation measured by labelling with DsRed-Mito expression (Knott et al, 2008) Mitochondrial dysfunction-induced oxidative stress can be measured by: • Reactive carbonyls formations (proteins oxidation) • Increased 8-oxo-dG immunoreactivity (DNA oxidation) • Lipid peroxidation (formation of malondialdehyde (MDA) and 4- hydroxynonenal (HNE) • 3-nitrotyrosine (3-NT) formation, marker of protein nitration • Translocation of Bid and Bax to mitochondria • Measurement of intracellular free calcium concentration ([Ca2+]i): Cells are loaded with 4 μM fura-2/AM). • Ratio between reduced and oxidized form of glutathione (GSH depletion) (Promega assay, TB369; Radkowsky et al., 1986) • Neuronal nitric oxide synthase (nNOS) activation that is Ca2+-dependent. All above measurements can be performed as the assays for each readout are well established in the existing literature (e.g. Bal-Price and Brown, 2000; Bal-Price et al., 2002; Fujikawa, 2015; Walker et al., 1995). See also KE Oxidative Stress, Increase


References

 

Adam-Vizi V. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal. 2005, 7(9-10):1140-1149.

Bal-Price A. and Guy C. Brown. Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. J. Neurochemistry, 2000, 75: 1455-1464.

Bal-Price A, Matthias A, Brown GC., Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J. Neurochem. 2002, 80: 73-80.

Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011 Apr 15;435(2):297-312.

Braun RJ. (2012). Mitochondrion-mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration. Front Oncol 2:182.

Barrientos A., and Moraes C.T. (1999) Titrating the Effects of Mitochondrial Complex I Impairment in the Cell Physiology. Vol. 274, No. 23, pp. 16188–16197.

Cammen M. Corwin, Susannah Christensen. John P. (1990) Electron transport system (ETS) activity as a measure of benthic macrofaunal metabolism MARINE ECOLOGY PROGRESS SERIES- (65) : 171-182.

Ciapaite, Lolita Van Eikenhorst, Gerco Bakker, Stephan J.L. Diamant, Michaela. Heine, Robert J Wagner, Marijke J. V. Westerhoff, Hans and Klaas Krab (2005) Modular Kinetic Analysis of the Adenine Nucleotide Translocator–Mediated Effects of Palmitoyl-CoA on the Oxidative Phosphorylation in Isolated Rat Liver Mitochondria Diabetes 54:4 944-951.

Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA. (2012). Mitochondrial importance in Alzheimer’s, Huntington’s and Parkinson’s diseases. Adv Exp Med Biol 724:205 – 221.

Cozzolino M, Ferri A, Valle C, Carri MT. (2013). Mitochondria and ALS: implications from novel genes and pathways. Mol Cell Neurosci 55:44 – 49.

Diepart, C, Verrax, J Calderon, PU, Feron, O., Jordan, BF, Gallez, B (2010) Comparison of methods for measuring oxygen consumption in tumor cells in vitroAnalytical Biochemistry 396 (2010) 250–256.

Farooqui T. and . Farooqui, A. A (2012) Oxidative stress in Vertebrates and Invertebrate: molecular aspects of cell signalling. Wiley-Blackwell,Chapter 27, pp:377- 385.

Fan LM, Li JM. Evaluation of methods of detecting cell reactive oxygen species production for drug screening and cell cycle studies. J Pharmacol Toxicol Methods. 2014 Jul-Aug;70(1):40-7.

Fiskum G. Mitochondrial participation in ischemic and traumatic neural cell death. J Neurotrauma. 2000 Oct;17(10):843-55.

Friberg H, Wieloch T. (2002). Mitochondrial permeability transition in acute neurodegeneration. Biochimie 84:241–250.

Fujikawa DG, The Role of Excitotoxic Programmed Necrosis in Acute Brain Injury. Computational and Structural Biotechnology Journal, 2015, 13: 212–221.

Graier WF, Frieden M, Malli R. (2007). Mitochondria and Ca2+ signaling: old guests, new functions. Pflugers Arch 455:375–396.

Green DR. (1998). Apoptotic pathways: the roads to ruin. Cell 94:695-698.

Grivennikova VG, Vinogradov AD. Generation of superoxide by the mitochondrial Complex I. Biochim Biophys Acta. 2006, 1757(5-6):553-61.

Hafner RP, Brown GC, Brand MD: Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the ‘top-down’ approach of metabolic control theory. Eur J Biochem188 :313 –319,1990.

Hinkle PC (1995) Measurement of ADP/O ratios. In Bioenergetics: A Practical Approach. Brown GC, Cooper CE, Eds. Oxford, U.K., IRL Press, p.5 –6.

Hynes, J.. Marroquin, L.D Ogurtsov, V.I. Christiansen, K.N. Stevens, G.J. Papkovsky, D.B. Will, Y. (2006)) Investigation of drug-induced mitochondrial toxicity using fluorescence-based oxygen-sensitive probes, Toxicol. Sci. 92 186–200.

James, P.E. Jackson, S.K.. Grinberg, O.Y Swartz, H.M. (1995) The effects of endotoxin on oxygen consumption of various cell types in vitro: an EPR oximetry study, Free Radic. Biol. Med. 18 (1995) 641–647.

Kang J, Pervaiz S. (2012). Mitochondria: Redox Metabolism and Dysfunction. Biochem Res Int 2012:896751.

Kann O, Kovács R. (2007). Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292:C641-576.

Knott Andrew B., Guy Perkins, Robert Schwarzenbacher & Ella Bossy-Wetzel. Mitochondrial fragmentation in neurodegeneration. Nature Reviews Neuroscience, 2008, 229: 505-518.

Llaudet E, Hatz S, Droniou M, Dale N. Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal Chem. 2005, 77(10):3267-73.

Lee HC, Wei YH. (2012). Mitochondria and aging. Adv Exp Med Biol 942:311-327.

Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem.2003;278:8516–8525.

Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006. 443:787-795.

Martin LJ. (2011). Mitochondrial pathobiology in ALS. J Bioenerg Biomembr 43:569 – 579.

Martinez-Cruz, Oliviert Sanchez-Paz, Arturo Garcia-Carreño, Fernando Jimenez-Gutierrez, Laura Ma. de los Angeles Navarrete del Toro and Adriana Muhlia-Almazan. Invertebrates Mitochondrial Function and Energetic Challenges (www.intechopen.com), Bioenergetics, Edited by Dr Kevin Clark, ISBN 978-953-51-0090-4, Publisher InTech, 2012, 181-218.

McBride HM, Neuspiel M, Wasiak S. (2006). Mitochondria: more than just a powerhouse. Curr Biol 16:R551–560.

McCord, J.M. and I. Fidovich (1968) The Reduction of Cytochrome C by Milk Xanthine Oxidase. J. Biol. Chem. 243:5733-5760.

Mei Y, Thompson MD, Cohen RA, Tong X. (2013) Endoplasmic Reticulum Stress and Related Pathological Processes. J Pharmacol Biomed Anal.. 1:100-107.

Modjtahedi N, Giordanetto F, Madeo F, Kroemer G. Apoptosis-inducing factor: vital and lethal. Trends Cell Biol. 2006 May;16(5):264-72.

Nunnari J, Suomalainen A. (2012). Mitochondria: in sickness and in health. Cell 148:1145–1159. Hajnóczky G, Csordás G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M. (2006). Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40:553-560.

Oliviert Martinez-Cruz, Arturo Sanchez-Paz, Fernando Garcia-Carreño, Laura Jimenez-Gutierrez, Ma. de los Angeles Navarrete del Toro and Adriana Muhlia-Almazan. Invertebrates Mitochondrial Function and Energetic Challenges (www.intechopen.com), Bioenergetics, Edited by Dr Kevin Clark, ISBN 978-953-51-0090-4, Publisher InTech, 2012, 181-218.

Owens R.G. and King F.D. The measurement of respiratory lectron-transport system activity in marine zooplankton. Mar. Biol. 1975, 30:27-36.

Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, Di Lisa F: Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 1999, 76:725-734.

Promega GSH-Glo Glutathione Assay Technical Bulletin, TB369, Promega Corporation, Madison, WI.

Pryor, W.A., J.P. Stanley, and E. Blair. (1976) Autoxidation of polyunsaturated fatty acids: II. A Suggested mechanism for the Formation of TBA-reactive materials from prostaglandin-like Endoperoxides. Lipids, 11:370-379.

Radkowsky, A.E. and E.M. Kosower (1986) Bimanes 17. (Haloalkyl)-1,5-diazabicyclo[3.3.O]octadienediones (halo-9,10- dioxabimanes): reactivity toward the tripeptide thiol, glutathione, J. Am. Chem. Soc 108:4527-4531.

Ruch, W., P.H. Cooper, and M. Baggiollini (1983) Assay of H2O2 production by macrophages and neutrophils with Homovanillic acid and horseradish peroxidase. J. Immunol Methods 63:347-357.

Sanders LH, McCoy J, Hu X, Mastroberardino PG, Dickinson BC, Chang CJ, Chu CT, Van Houten B, Greenamyre JT. (2014a). Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson's disease. Neurobiol Dis. 70:214-23.

Sanders LH, Howlett EH2, McCoy J, Greenamyre JT. (2014b) Mitochondrial DNA damage as a peripheral biomarker for mitochondrial toxin exposure in rats. Toxicol Sci. Dec;142(2):395-402.

Single B, Leist M, Nicotera P. Simultaneous release of adenylate kinase and cytochrome c in cell death. Cell Death Differ. 1998 Dec;5(12):1001-3.

Tahira Farooqui and Akhlaq A. Farooqui. (2012) Oxidative stress in Vertebrates and Invertebrate: molecular aspects of cell signalling. Wiley-Blackwell,Chapter 27, pp:377- 385.

Tarpley, M.M., D.A. Wink, and M.B. Grisham (2004) Methods for detection of reactive Metabolites of Oxygen and Nitrogen: in vitro and in vivo considerations. Am . J. Physiol Regul Integr Comp Physiol. 286:R431-R444.

von Heimburg, D. Hemmrich, K. Zachariah S.,. Staiger, H Pallua, N.(2005) Oxygen consumption in undifferentiated versus differentiated adipogenic mesenchymal precursor cells, Respir. Physiol. Neurobiol. 146 (2005) 107–116.

Waerzeggers, Yannic Monfared, Parisa Viel, Thomas Winkeler, Alexandra Jacobs, Andreas H. (2010) Mouse models in neurological disorders: Applications of non-invasive imaging, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, Volume 1802, Issue 10, Pages 819-839.

Walker JE, Skehel JM, Buchanan SK. (1995) Structural analysis of NADH: ubiquinone oxidoreductase from bovine heart mitochondria. Methods Enzymol.;260:14–34.

Wang A, Costello S, Cockburn M, Zhang X, Bronstein J, Ritz B. (2011). Parkinson’s disease risk from ambient exposure to pesticides. Eur J Epidemiol 26:547-555.

Wang Y., and Qin ZH., Molecular and cellular mechanisms of excitotoxic neuronal death, Apoptosis, 2010, 15:1382-1402.

Wieloch T. (2001). Mitochondrial Involvement in Acute Neurodegeneration 52:247–254.

Winklhofer, K. Haass,C (2010) Mitochondrial dysfunction in Parkinson's disease, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1802: 29-44.

Zhou, M., Z.Diwu, Panchuk-Voloshina, N. and R.P. Haughland (1997), A Stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: application in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal. Biochem 253:162-168.


Event: 55: N/A, Cell injury/death

Short Name: N/A, Cell injury/death

Key Event Component

Process Object Action
cell death increased

AOPs Including This Key Event


Biological Context

Level of Biological Organization
Cellular

Cell term

Cell term
eukaryotic cell

Domain of Applicability


Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens High NCBI
human and other cells in culture human and other cells in culture High NCBI
Rattus norvegicus Rattus norvegicus High NCBI
mouse Mus musculus High NCBI
Life Stage Applicability
Life Stage Evidence
All life stages
Sex Applicability
Sex Evidence
Unspecific

Cell death is an universal event occurring in cells of any species (Fink and Cookson,2005).


Key Event Description

Two types of cell death can be distinguished by morphological features, although it is likely that these are two ends of a spectrum with possible intermediate forms. Apoptosis involves shrinkage, nuclear disassembly, and fragmentation of the cell into discrete bodies with intact plasma membranes. These are rapidly phagocytosed by neighbouring cells. An important feature of apoptosis is the requirement for adenosine triphosphate (ATP) to initiate the execution phase. In contrast, necrotic cell death is characterized by cell swelling and lysis. This is usually a consequence of profound loss of mitochondrial function and resultant ATP depletion, leading to loss of ion homeostasis, including volume regulation, and increased Ca2+. The latter activates a number of nonspecific hydrolases (i.e., proteases, nucleases, and phospholipases) as well as calcium dependent kinases. Activation of calpain I, the Ca2+-dependent cysteine protease cleaves the death-promoting Bcl-2 family members Bid and Bax which translocate to mitochondrial membranes, resulting in release of truncated apoptosis-inducing factor (tAIF), cytochrome c and endonuclease in the case of Bid and cytocrome c in the case of Bax. tAIF translocates to cell nuclei, and together with cyclophilin A and phosphorylated histone H2AX (γH2AX) is responsible for DNA cleavage, a feature of programmed necrosis. Activated calpain I has also been shown to cleave the plasma membrane Na+–Ca2+ exchanger, which leads to build-up of intracellular Ca2+, which is the source of additional increased intracellular Ca2+. Cytochrome c in cellular apoptosis is a component of the apoptosome.

DNA damage activates nuclear poly(ADP-ribose) polymerase-1(PARP-1), a DNA repair enzyme. PARP-1 forms poly(ADP-ribose) polymers, to repair DNA, but when DNA damage is extensive, PAR accumulates, exits cell nuclei and travels to mitochondrial membranes, where it, like calpain I, is involved in AIF release from mitochondria. A fundamental distinction between necrosis and apoptosis is the loss of plasma membrane integrity; this is integral to the former but not the latter. As a consequence, lytic release of cellular constituents promotes a local inflammatory reaction, whereas the rapid removal of apoptotic bodies minimizes such a reaction. The distinction between the two modes of death is easily accomplished in vitro but not in vivo. Thus, although claims that certain drugs induce apoptosis have been made, these are relatively unconvincing. DNA fragmentation can occur in necrosis, leading to positive TUNEL staining. Conversely, when apoptosis is massive, it can exceed the capacity for rapid phagocytosis, resulting in the eventual appearance of secondary necrosis.

Two alternative pathways - either extrinsic (receptor-mediated) or intrinsic (mitochondria-mediated) - lead to apoptotic cell death. The initiation of cell death begins either at the plasma membrane with the binding of TNF or FasL to their cognate receptors or within the cell. The latter is due to the occurrence of intracellular stress in the form of biochemical events such as oxidative stress, redox changes, covalent binding, lipid peroxidation, and consequent functional effects on mitochondria, endoplasmic reticulum, microtubules, cytoskeleton, or DNA. The intrinsic mitochondrial pathway involves the initiator, caspase-9, which, when activated, forms an “apoptosome” in the cytosol, together with cytochrome c, which translocates from mitochondria, Apaf-1 and dATP. The apoptosome activates caspase-3, the central effector caspase, which in turn activates downstream factors that are responsible for the apoptotic death of a cell (Fujikawa, 2015). Intracellular stress either directly affects mitochondria or can lead to effects on other organelles, which then send signals to the mitochondria to recruit participation in the death process (Fujikawa, 2015; Malhi et al., 2010). Constitutively expressed nitric oxide synthase (nNOS) is a Ca2+-dependent cytosolic enzyme that forms nitric oxide (NO) from L-arginine, and NO reacts with the free radical such as superoxide (O2−) to form the very toxic free radical peroxynitrite (ONOO−). Free radicals such as ONOO−, O2 − and hydroxyl radical (OH−) damage cellular membranes and intracellular proteins, enzymes and DNA (Fujikawa, 2015; Malhi et al., 2010; Kaplowitz, 2002; Kroemer et al., 2009).  


How it is Measured or Detected

Necrosis:

LDH is a soluble cytoplasmic enzyme that is present in almost all cells and is released into extracellular space when the plasma membrane is damaged. To detect the leakage of LDH into cell culture medium, a tetrazolium salt is used in this assay. In the first step, LDH produces reduced nicotinamide adenine dinucleotide (NADH) when it catalyzes the oxidation of lactate to pyruvate. In the second step, a tetrazolium salt is converted to a colored formazan product using newly synthesized NADH in the presence of an electron acceptor. The amount of formazan product can be colorimetrically quantified by standard spectroscopy. Because of the linearity of the assay, it can be used to enumerate the percentage of necrotic cells in a sample (Chan et al., 2013). 

The MTT assay is a colorimetric assay for assessing cell viability. NAD(P)H-dependent cellular oxidoreductase enzymes may reflect the number of viable cells present. These enzymes are capable of reducing the tetrazolium dye MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to its insoluble formazan, which has a purple color. Other closely related tetrazolium dyes including XTT, MTS and the WSTs. Tetrazolium dye assays can also be used to measure cytotoxicity (loss of viable cells) or cytostatic activity (shift from proliferation to quiescence) of potential medicinal agents and toxic materials. MTT assays are usually done in the dark since the MTT reagent is sensitive to light (Berridgeet al.,2005).

Propidium iodide (PI) is an intercalating agent and a fluorescent molecule used to stain necrotic cells. It is cell membrane impermeant so it stains only those cells where the cell membrane is destroyed. When PI is bound to nucleic acids, the fluorescence excitation maximum is 535 nm and the emission maximum is 617 nm (Moore et al.,1998)

Alamar Blue (resazurin) fluorescent dye. The oxidized blue non fluorescent Alamar blue is reduced to a pink fluorescent dye in the medium by cell activity (O'Brien et al., 2000) (12).

Neutral red uptake, which is based on the ability of viable cells to incorporate and bind the supravital dye neutral red in lysosomes (Repetto et al., 2008)(13).

ATP assay: Quantification of ATP, signaling the presence of metabolically active cells (CellTiter-Glo; Promega).


Apoptosis:

TUNEL is a common method for detecting DNA fragmentation that results from apoptotic signalling cascades. The assay relies on the presence of nicks in the DNA which can be identified by terminal deoxynucleotidyl transferase or TdT, an enzyme that will catalyze the addition of dUTPs that are secondarily labeled with a marker. It may also label cells that have suffered severe DNA damage.

Caspase activity assays measured by fluorescence. During apoptosis, mainly caspase-3 and -7 cleave PARP to yield an 85 kDa and a 25 kDa fragment. PARP cleavage is considered to be one of the classical characteristics of apoptosis. Antibodies to the 85 kDa fragment of cleaved PARP or to caspase-3 both serve as markers for apoptotic cells that can be monitored using immunofluorescence (Li, Peng et al., 2004).

Hoechst 33342 staining: Hoechst dyes are cell-permeable and bind to DNA in live or fixed cells. Therefore, these stains are often called supravital, which means that cells survive a treatment with these compounds. The stained, condensed or fragmented DNA is a marker of apoptosis (Loo, 2002; Kubbies and Rabinovitch, 1983). 

Acridine Orange/Ethidium Bromide staining is used to visualize nuclear changes and apoptotic body formation that are characteristic of apoptosis. Cells are viewed under a fluorescence microscope and counted to quantify apoptosis.


References

  • Fujikawa, D.G. (2015), The role of excitotoxic programmed necrosis in acute brain injury, Comput Struct Biotechnol J, vol. 13, pp. 212-221.
  • Malhi, H. et al. (2010), Hepatocyte death: a clear and present danger, Physiol Rev, vol. 90, no. 3, pp. 1165-1194.
  • Kaplowitz, N. (2002), Biochemical and Cellular Mechanisms of Toxic Liver Injury, Semin Liver Dis, vol. 22, no. 2, http://www.medscape.com/viewarticle/433631 (accessed on 20 January 2016).
  • Kroemer, G. et al., (2009), Classification of cell death: recommendations of the Nomenclature Committee on Cell Death, Cell Death Differ, vol. 16, no. 1, pp. 3-11.
  • Chan, F.K., K. Moriwaki and M.J. De Rosa (2013), Detection of necrosis by release of lactate dehydrogenase (LDH) activity, Methods Mol Biol, vol. 979, pp. 65–70.
  • Berridge, M.V., P.M. Herst and A.S. Tan (2005), Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology Annual Review, vol. 11, pp 127-152.
  • Moore, A, et al.(1998), Simultaneous measurement of cell cycle and apoptotic cell death,Methods Cell Biol, vol. 57, pp. 265–278.
  • Li, Peng et al. (2004), Mitochondrial activation of apoptosis, Cell, vol. 116, no. 2 Suppl,pp. S57-59, 2 p following S59.
  • Loo, D.T. (2002), TUNEL Assay an overview of techniques, Methods in Molecular Biology, vol. 203: In Situ Detection of DNA Damage, chapter 2, Didenko VV (ed.), Humana Press Inc.
  • Kubbies, M. and P.S. Rabinovitch (1983), Flow cytometric analysis of factors which influence the BrdUrd-Hoechst quenching effect in cultivated human fibroblasts and lymphocytes, Cytometry, vol. 3, no. 4, pp. 276–281.
  • Fink, S.L. and B.T. Cookson (2005), Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells, Infect Immun, vol. 73, no. 4, pp.1907-1916.
  • O'Brien J, Wilson I, Orton T, Pognan F. 2000. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European journal of biochemistry / FEBS 267(17): 5421-5426.
  • Repetto G, del Peso A, Zurita JL. 2008. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nature protocols 3(7): 1125-1131.

Event: 1493: Increased Pro-inflammatory mediators

Short Name: Increased pro-inflammatory mediators

Key Event Component

Process Object Action
acute inflammatory response increased

Biological Context

Level of Biological Organization
Tissue

Domain of Applicability


Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens NCBI
Vertebrates Vertebrates NCBI
Life Stage Applicability
Life Stage Evidence
All life stages
Sex Applicability
Sex Evidence
Unspecific

LIVER:

Human [Santibañez et al., 2011]

Rat [Luckey and Petersen, 2001]

Mouse [Nan et al., 2013]


Key Event Description

Inflammatory mediators are soluble, diffusible molecules that act locally at the site of tissue damage and infection, and at more distant sites. They can be divided into exogenous and endogenous mediators.

Exogenous mediators of inflammation are bacterial products or toxins like endotoxin or LPS. Endogenous mediators of inflammation are produced from within the (innate and adaptive) immune system itself, as well as other systems. They can be derived from molecules that are normally present in the plasma in an inactive form, such as peptide fragments of some components of complement, coagulation, and kinin systems. Or they can be released at the site of injury by a number of cell types that either contain them as preformed molecules within storage granules, e.g. histamine, or which can rapidly switch on the machinery required to synthesize the mediators.

Table1: a non-exhaustive list of examples for pro-inflammatory mediators

Classes of inflammatory mediators

Examples

Pro-inflammatory cytokines

TNF-a, Interleukins (IL-1, IL-6, IL-8), Interferons  (IFN-g), chemokines (CXCL, CCL, GRO-α, MCP-1), GM-CSF

Prostaglandins

PGE2

Bradykinin

 

Vasoactive amines

histamine, serotonin

Reactive oxygen species (ROS)

O2-, H2O2

Reactive nitrogen species (RNS)

NO, iNOS

The increased production of pro-inflammatory mediators can have negative consequences on the parenchymal cells leading even to cell death, as described for TNF-a or peroxynitrite on neurons (Chao et al., 1995; Brown and Bal-Price, 2003). In addition, via a feedback loop, they can act on the reactive resident cells thus maintaining or exacerbating their reactive state; and by modifying elements of their signalling pathways, they can favour the M1 phenotypic polarization and the chronicity of the inflammatory process (Taetzsch et al., 2015).

Basically, this event occurs equally in various tissues and does not require tissue-specific descriptions. Nevertheless, there are some specificities such as the release of glutamate by brain reactive glial cells (Brown and Bal-Price, 2003; Vesce et al., 2007).The differences may rather reside in the type of insult favouring the increased expression and/or release of a specific class of inflammatory mediators, as well the time after the insult reflecting different stages of the inflammatory process. For these reasons, the analyses of the changes of a battery of inflammatory mediators rather than of a single one is a more adequate measurement of this KE.

LIVER:

When activated, resident macrophages (Kupffer cells) release inflammatory mediators including cytokines, chemokines, lysosomal, and proteolytic enzymes and are a main source of TGF-β1 - the most potent pro-fibrogenic cytokine. Following the role of TGF-β is described in more detail.

Transforming growth factor β (TGF-β) is a pleiotropic cytokine with potent regulatory and

inflammatory activity [Sanjabi et al., 2009; Li and Flavell, 2008a;2008b]. The multi-faceted effects of TGF-β on numerous immune functions are cellular and environmental context dependent [Li et al., 2006]. TGF-β binds to TGF-β receptor II (TGF-βRII) triggering the kinase activity of the cytoplasmic domain that in turn activates TGF-βRI. The activated receptor complex leads to nuclear translocation of Smad molecules,

and transcription of target genes [Li et al., 2006a]. The role of TGF-β as an immune modulator of T cell activity is best exemplified by the similarities between TGF-β1 knockout and T cell specific

TGF-β receptor II knockout mice [Li et al., 2006b; Marie et al., 2006;Shull et al., 1992]. The animals in both of these models develop severe multi-organ autoimmunity and succumb to death within a few weeks after birth [Li et al., 2006b; Marie et al., 2006; Shull et al., 1992]. In addition, in mice where TGF-β signaling is blocked specifically in T cells, the development of natural killer T (NKT) cells, natural regulatory T (nTreg) cells, and CD8+ T cells was shown to be dependent on TGF-β signaling in the thymus [Li et al., 2006b; Marie et al., 2006].

TGF-β plays a major role under inflammatory conditions. TGF-β in the presence of IL-6 drives the differentiation of T helper 17 (Th17) cells, which can promote further inflammation and augment autoimmune conditions [Korn et al., 2009]. TGF-β orchestrates the differentiation of both Treg and Th17 cells in a concentration-dependent manner [Korn et al., 2008]. In addition, TGF-β in combination with IL-4, promotes the differentiation of IL-9- and IL-10-producing T cells, which lack

suppressive function and also promote tissue inflammation [Dardalhon  et al., 2008; Veldhoen et al., 2008]. The biological effects of TGF-β under inflammatory conditions on effector and memory CD8+ T cells are much less understood. In a recent study, it was shown that TGF-β has a drastically opposing role on naïve compared to antigen-experienced/memory CD8+ T cells [Filippi et al., 2008]. When cultured in vitro, TGF-β suppressed naïve CD8+ T cell activation and IFN-γ production, whereas TGF-β enhanced survival of memory CD8+ T cells and increased the production of IL-17 and IFN-γ [Filippi et al., 2008]. TGF-β also plays an important role in suppressing the cells of the innate immune system.

The transforming growth factor beta (TGF-β) family of cytokines are ubiquitous, multifunctional, and essential to survival. They play important roles in growth and development, inflammation and repair, and host immunity. The mammalian TGF-β isoforms (TGF-β1, β2 and β3) are secreted as latent precursors and have multiple cell surface receptors of which at least two mediate signal transduction. Autocrine and paracrine effects of TGF-βs can be modified by extracellular matrix, neighbouring cells and other cytokines. The vital role of the TGF-β family is illustrated by the fact that approximately 50% of TGF-1 gene knockout mice die in utero and the remainder succumb to uncontrolled inflammation after birth. The role of TGF-β in homeostatic and pathogenic processes suggests numerous applications in the diagnosis and treatment of various diseases characterised by inflammation and fibrosis. [Clark and Coker, 1998; Santibañez et al., 2011; Pohlers et al., 2009] Abnormal TGF-β regulation and function are implicated in a growing number of fibrotic and inflammatory pathologies, including pulmonary fibrosis, liver cirrhosis, glomerulonephritis and diabetic nephropathy, congestive heart failure, rheumatoid arthritis, Marfan syndrome, hypertrophic scars, systemic sclerosis, myocarditis, and Crohn’s disease. [Gordon and Globe,2008] TGF-β1 is a polypeptide member of the TGF-β superfamily of cytokines. TGF-β is synthesized as a non-active pro-form, forms a complex with two latent associated proteins latency-associated protein (LAP) and latent TGF- β binding protein (LTBP) and undergoes protolithic cleavage by the endopeptidase furin to generate the mature TGF-β dimer. Among the TGF-βs, six distinct isoforms have been discovered although only the TGF-β1, TGF-β2 and TGF-β3 isoforms are expressed in mammals, and their human genes are located on chromosomes 19q13, 1q41 and 14q24, respectively. Out of the three TGF-β isoforms (β1, β2 and β3) only TGF-β1 was linked to fibrogenesis and is the most potent fibrogenic factor for hepatic stellate cells. [Roberts, 1998; Govinden and Bhoola, 2003]. During fibrogenesis, tissue and blood levels of active TGF-β are elevated and overexpression of TGF-β1 in transgenic mice can induce fibrosis. Additionally, experimental fibrosis can be inhibited by anti-TGF-β treatments with neutralizing antibodies or soluble TGF-β receptors [Qi et al.; 1999; Shek and Benyon , 2004; De Gouville et al., 2005; Chng et al., 2009]. TGF-β1 induces its own mRNA to sustain high levels in local sites of injury. The effects of TGF-β1 are classically mediated by intracellular signalling via Smad proteins. Smads 2 and 3 are stimulatory whereas Smad 7 is inhibitory. [Parsons et al., 2013; Friedman, 2008; Kubiczkova et al., 2012] Smad1/5/8, MAP kinase (mitogen-activated protein) and PI3 kinase are further signalling pathways in different cell types for TGF-β1 effects.

TGF-β is found in all tissues, but is particularly abundant in bone, lung, kidney and placental tissue. TGF-β is produced by many, but not all parenchymal cell types, and is also produced or released by infiltrating cells such as lymphocytes, monocytes/macrophages, and platelets. Following wounding or inflammation, all these cells are potential sources of TGF-β. In general, the release and activation of TGF-β stimulates the production of various extracellular matrix proteins and inhibits the degradation of these matrix proteins. [Branton and Kopp, 1999]

TGF-β 1 is produced by every leukocyte lineage, including lymphocytes, macrophages, and dendritic cells, and its expression serves in both autocrine and paracrine modes to control the differentiation, proliferation, and state of activation of these immune cells. [Letterio and Roberts; 1998]

In the liver TGF-β1 is released by activated Kupffer cells, liver sinusoidal endothelial cells, and platelets; in the further course of events also activated hepatic stellate cells express TGF-β1. Hepatocytes do not produce TGF-β1 but are implicated in intracellular activation of latent TGF-β1. [Roth et al., 1998; Kisseleva and Brenner, 2007; Kisseleva and Brenner, 2008; Poli, 2000; Liu et al., 2006]

TGF-β1 is the most established mediator and regulator of epithelial-mesenchymal-transition (EMT) which further contributes to the production of extracellular matrix. It has been shown that TGF-β1 mediates EMT by inducing snail-1 transcription factor and tyrosine phosphorylation of Smad2/3 with subsequent recruitment of Smad4. [Kolios et al., 2006; Bataller and Brenner, 2005; Guo and Friedman,2007; Brenner,2009; Kaimorei et al., 2007; Gressner et al., 2002; Kershenobich Stalnikowitz and Weisssbrod, 2003; Li et al., 2008; Matsuoka and Tsukamoto, 1990; Kisseleva and Brenner, 2008; Poli, 200; Parsons et al., 2007; Friedman 2008; Liu et al., 2006]

TGF-β1 induces apoptosis and angiogenesis in vitro and in vivo through the activation of vascular endothelial growth factor (VEGF) High levels of VEGF and TGF-β1 are present in many tumors. Crosstalk between the signalling pathways activated by these growth factors controls endothelial cell apoptosis and angiogenesis. [Clark and Coker; 1998]

 


How it is Measured or Detected

The specific type of measurement(s) might vary with tissue, environment and context and will need to be described for different tissue contexts  as used within different AOP descriptions.

In general, quantification of inflammatory markers can be done by:

  • PCR (mRNA expression)
  • ELISA
  • Immunocytochemistry
  • Immunoblotting

For descriptions of techniques, see Falsig 2004; Lund 2006 ; Kuegler 2010; Monnet-Tschudi et al., 2011; Sandström et al., 2014; von Tobel et al.,  2014
 

LIVER:

There are several assays for TGB-β1 measurement available.

e.g. Human TGF-β1 ELISA Kit. The Human TGF-β 1 ELISA (Enzyme –Linked Immunosorbent Assay) kit is an in vitro enzyme-linked immunosorbent assay for the quantitative measurement of human TGF-β1 in serum, plasma, cell culture supernatants, and urine. This assay employs an antibody specific for human TGF-β1 coated on a 96-well plate. Standards and samples are pipetted into the wells and TGF-β1 present in a sample is bound to the wells by the immobilized antibody. The wells are washed and biotinylated anti-human TGF-β1 antibody is added. After washing away unbound biotinylated antibody, HRP- conjugated streptavidin is pipetted to the wells. The wells are again washed, a TMB substrate solution is added to the wells and colour develops in proportion to the amount of TGF-β1 bound. The StopSolution changes the colour from blue to yellow, and the intensity of the colour is measured at 450 nm [Mazzieri et al., 2000]


References

Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27: 325-355

Dong Y, Benveniste EN (2001) Immune Function of Astrocytes. Glia 36: 180-190

Falsig J, Latta M, Leist M. Defined inflammatory states in astrocyte cultures correlation with susceptibility towards CD95-driven apoptosis. J Neurochem. 2004  Jan;88(1):181-93.

Falsig J, Pörzgen P, Lund S, Schrattenholz A, Leist M. The inflammatory transcriptome of reactive murine astrocytes and implications for their innate immune function. J Neurochem. 2006 Feb;96(3):893-907.

Falsig J, van Beek J, Hermann C, Leist M. Molecular basis for detection of invading pathogens in the brain. J Neurosci Res. 2008 May 15;86(7):1434-47.

Hamadi N, Sheikh A, Madjid N, Lubbad L, Amir N, Shehab SA, Khelifi-Touhami F, Adem A: Increased pro-inflammatory cytokines, glial activation and oxidative stress in the hippocampus after short-term bilateral adrenalectomy. BMC Neurosci 2016, 17:61.

Kuegler PB, Zimmer B, Waldmann T, Baudis B, Ilmjärv S, Hescheler J, Gaughwin P, Brundin P, Mundy W, Bal-Price AK, Schrattenholz A, Krause KH, van Thriel C, Rao MS, Kadereit S, Leist M. Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX. 2010;27(1):17-42

Lund S, Christensen KV, Hedtjärn M, Mortensen AL, Hagberg H, Falsig J, Hasseldam H, Schrattenholz A, Pörzgen P, Leist M. The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions. J Neuroimmunol. 2006 Nov;180(1-2):71-87.

Monnet-Tschudi, F., A. Defaux, et al. (2011). "Methods to assess neuroinflammation." Curr Protoc Toxicol Chapter 12: Unit12 19.

Sandstrom von Tobel, J., D. Zoia, et al. (2014). "Immediate and delayed effects of subchronic Paraquat exposure during an early differentiation stage in 3D-rat brain cell cultures." Toxicol Lett. DOI : 10.1016/j.toxlet.2014.02.001

Taetzsch T, Levesque S, McGraw C, Brookins S, Luqa R, Bonini MG, Mason RP, Oh U, Block ML (2015) Redox regulation of NF-kappaB p50 and M1 polarization in microglia. Glia 5, 63:423-440.

Vesce S, Rossi D, Brambilla L, Volterra A (2007) Glutamate release from astrocytes in physiological conditions and in neurodegenerative disorders characterized by neuroinflammation. Int Rev Neurobiol. 82 :57-71.

 LIVER:

  • Bataller, R. and D.A. Brenner (2005), Liver Fibrosis, J.Clin. Invest, vol. 115, no. 2, pp. 209-218.
  • Branton, M.H. and J.B. Kopp (1999), TGF-beta and fibrosis, Microbes Infect, vol. 1, no. 15, pp. 1349-1365.
  • Brenner, D.A. (2009), Molecular Pathogenesis of Liver Fibrosis, Trans Am Clin Climatol Assoc, vol. 120, pp. 361–368.
  • Calvin D, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992;359:693–699.
  • Cheng, K., N.Yang and R.I. Mahato (2009), TGF-beta1 gene silencing for treating liver fibrosis, Mol Pharm, vol. 6, no. 3, pp. 772–779.
  • Clark, D.A. and R.Coker (1998), Transforming growth factor-beta (TGF-beta), Int J Biochem Cell Biol, vol. 30, no. 3, pp. 293-298.
  • Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB,
  • De Gouville, A.C. et al. (2005), Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis, Br J Pharmacol, vol. 145, no. 2, pp. 166–177.
  • Elyaman W, Ho IC, et al. IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGFbeta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol 2008;9:1347–1355.
  • Filippi CM, Juedes AE, Oldham JE, Ling E, Togher L, Peng Y, Flavell RA, von Herrath MG.
  • Friedman, S.L. (2008), Mechanisms of Hepatic Fibrogenesis, Gastroenterology, vol. 134, no. 6, pp. 1655–1669.
  • Gordon, K.J. and G.C. Blobe (2008), Role of transforming growth factor-β superfamily signalling pathways in human disease, Biochim Biophys Acta, vol. 1782, no. 4, pp. 197–228.
  • Govinden, R. and K.D. Bhoola (2003), Genealogy, expression, and cellular function of transforming growth factor-β, Pharmacol. Ther, vol. 98, no. 2, pp. 257–265.
  • Gressner, A.M. et al. (2002), Roles of TGF-β in hepatic fibrosis. Front Biosci, vol. 7, pp. 793-807.
  • Guo, J. and S.L. Friedman (2007), Hepatic fibrogenesis, Semin Liver Dis, vol. 27, no. 4, pp. 413-426.
  • Kaimori, A. et al. (2007), Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro, J Biol Chem, vol. 282, no. 30, pp. 22089-22101.
  • Kershenobich Stalnikowitz, D. and A.B. Weisssbrod (2003), Liver Fibrosis and Inflammation. A Review, Annals of Hepatology, vol. 2, no. 4, pp.159-163.
  • Kisseleva T and Brenner DA, (2008), Mechanisms of Fibrogenesis, Exp Biol Med, vol. 233, no. 2, pp. 109-122.
  • Kisseleva, T. and Brenner, D.A. (2007), Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis, Journal of Gastroenterology and Hepatology, vol. 22, Suppl. 1; pp. S73–S78.
  • Kolios, G., V. Valatas and E. Kouroumalis (2006), Role of Kupffer cells in the pathogenesis of liver disease, World J.Gastroenterol, vol. 12, no. 46, pp. 7413-7420.
  • Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009
  • Kubiczkova, L. et al, (2012), TGF-β - an excellent servant but a bad master, J Transl Med, vol. 10, p. 183.
  • Letterio, J.J. and A.B. Roberts (1998), Regulation of immune responses by TGF-beta, Annu Rev Immunol, vol.16, pp. 137-161.
  • Li MO, Flavell RA. Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity 2008a;28:468–476.
  • Li MO, Flavell RA. TGF-beta: a master of all T cell trades. Cell 2008b;134:392–404.
  • Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 2006b;25:455–471.
  • Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006a;24:99–146.
  • Li, Jing-Ting et al. (2008), Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies, J Gastroenterol, vol. 43, no. 6, pp. 419–428.
  • Liu, Xingjun et al. (2006), Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis. Liver Int, vol.26, no.1, pp. 8-22.
  • Luckey, S.W., and D.R. Petersen (2001), Activation of Kupffer cells during the course of carbon tetrachloride-induced liver injury and fibrosis in rats, Exp Mol Pathol, vol. 71, no. 3, pp. 226-240.
  • Marie JC, Liggitt D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 2006;25:441–454.
  • Matsuoka, M. and H. Tsukamoto, (1990), Stimulation of hepatic lipocyte collagen production by Kupffer cell-derived transforming growth factor beta: implication for a pathogenetic role in alcoholic liver fibrogenesis, Hepatology, vol. 11, no. 4, pp. 599-605.
  • Mazzieri, R .et al. (2000), Measurements of Active TGF-β Generated by Culture Cells, Methods in Molecular Biology, vol. 142, pp. 13-27.
  • Nan, Y.M. et al. (2013), Activation of peroxisome proliferator activated receptor alpha ameliorates ethanol mediated liver fibrosis in mice, Lipids Health Dis, vol. 12, p.11.
  • Parsons, C.J., M.Takashima and R.A. Rippe (2007), Molecular mechanisms of hepatic fibrogenesis. J Gastroenterol Hepatol, vol. 22, Suppl.1, pp. S79-S84.
  • Pohlers , D. et al. (2009), TGF-β and fibrosis in different organs – molecular pathway imprints, Biochim. Biophys. Acta, vol. 1792, no. 8, pp.746–756.
  • Poli, G. (2000), Pathogenesis of liver fibrosis: role of oxidative stress, Mol Aspects Med, vol. 21, no. 3, pp. 49 – 98.
  • Qi Z et al.(1999),Blockade of type beta transforming growth factor signalling prevents liver fibrosis and dysfunction in the rat, Proc Natl Acad Sci USA, vol. 96, no. 5, pp. 2345-2349.
  • Roberts, A.B. (1998), Molecular and cell biology of TGF-β, Miner Electrolyte Metab, vol. 24, no. 2-3, pp. 111-119.
  • Roth, S., K. Michel and A.M. Gressner (1998), (Latent) transforming growth factor beta in liver parenchymal cells, its injury-dependent release, and paracrine effects on rat HSCs, Hepatology, vol. 27, no. 4, pp. 1003-1012.
  • Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti- and Pro-inflammatory Roles of TGF-β, IL-10, and IL-22 In Immunity and Autoimmunity. Current opinion in pharmacology. 2009;9(4):447-453.
  • Santibañez J.F., M. Quintanilla and C. Bernabeu (2011), TGF-β/TGF-β receptor system and its role in physiological and pathological conditions, Clin Sci (Lond), vol. 121, no. 6, pp. 233-251.
  • Shek, F.W. and R.C. Benyon (2004), How can transforming growth factor beta be targeted usefully to combat liver fibrosis? Eur J Gastroenterol Hepatol, vol. 16, no. 2, pp.123-126.
  • Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G,
  • Transforming growth factor-beta suppresses the activation of CD8+ T-cells when naive but promotes their survival and function once antigen experienced: a two-faced impact on autoimmunity. Diabetes 2008;57:2684–2692.
  • Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B. Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 2008;9:1341–1346.
  • Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, Shen Y, Du J, Rubtsov YP, Rudensky AY, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008;453:236–240.

 


Event: 1494: Leukocyte recruitment/activation

Short Name: Leukocyte recruitment/activation

Key Event Component

Process Object Action
cell activation involved in immune response leukocyte increased

AOPs Including This Key Event


Biological Context

Level of Biological Organization
Cellular

Domain of Applicability


Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens NCBI
Vertebrates Vertebrates NCBI
Life Stage Applicability
Life Stage Evidence
All life stages
Sex Applicability
Sex Evidence
Unspecific

Key Event Description

 

The inflammatory response is the cornerstone of the body’s defense mechanism against bacterial and viral pathogens, as well as physical-, chemical- and environmental-mediated tissue and organ damage. Leucocyte recruitment at the site of pathogen evasion or sterile tissue injury is a critical adaptation for the preservation of tissue integrity. Neutrophils are the cell population that acutely responds to the alterations of inflammatory micro-environment. Neutrophil infiltration takes place within 6-8 hours from the initiation of the inflammatory process and is followed by the recruitment of other cell populations, like monocytes, lymphocytes, and eosinophils, which either promote or drive the resolution of inflammation. Leukocyte infiltration into sites of infection or sterile inflammation is a tightly regulated process that follows a sequence of adhesive events, termed as leukocyte adhesion cascade. One can broadly generalize that most leukocytes follow a similar multi-step cascade in the peripheral (non-lymphoid) vasculature with some exceptions. Accordingly, an updated adhesion cascade in postcapillary venules involves free-flowing leukocytes initial attachment or tethering and slow velocity rolling (step 1),stable adhesion (arrest) on endothelial cells (step 2), leukocyte flattening (step 3), and subsequent crawling on the vascular endothelium, transendothelial cell migration (TEM) between (paracellular route) or through (transcellular) the vascular endothelium (step 4), and uropod elongation to complete transmigration of postcapillary venules (step 5). The initial attachment and rolling steps are initiated by interactions of endothelial E- and P-selectins and their counterreceptors on leukocytes L-selectin (Leick et al., 2014).

Each of these steps is necessary for effective leukocyte recruitment; these steps are not phases of inflammation, but represent the sequence of events from the perspective of each leukocyte. At any given moment they all happen in parallel, involving different leukocytes in the same microvessels.

From the initial selectin-dependent leukocyte tethering to endothelial cells to the final migration of leukocytes into the sub-endothelium, this process depends on the interplay between leukocyte receptors and endothelial cell counter-receptors, as well as on the presence of endogenous inhibitors of leukocyte adhesion enabling the targeted recruitment of leukocytes to inflamed tissues.

To enable the infiltration of leukocytes at the site of inflammation, a series of alterations in endothelial cells and leukocytes takes place:

  • regulation of the expression of adhesion molecules in leukocytes
  • increased secretion of chemokines by endothelial cells
  • increased expression of adhesion molecules in the luminal surface of endothelial cells

(Kourtzelis and Mitroulis, 2015) (Robbins and Cotran: Pathologic Basis of Disease 2010).

After recruitment, activation includes phenotype modification with morphologic alterations, changes in marker proteins (MHC, adhesion molecules, co-stimulatory signal), expression of mediators, enzymes, and pro-inflammatory proteins/lipids. Recruited monocytes recruited mature into macrophages with phagocytic activity and elaboration of a myriad of mediators of inflammation. The macrophage can replicate within tissues or die, including by apoptosis.

 

 

 


How it is Measured or Detected

in vivo imaging:

  • Flow cytometry (FC/FACS),
  • immunhistochemistry
  • two photon-intravital microscopy (TP-IVM) (van Grinsven et al., 2017)
  • Spinning Disk Confocal Microscopy-IVM (Jenne et al., 2011)
  • Histology, increased cell numbers and altered composition

In vitro

  • transwell Migration Assay (Justus et al., 2014)
  • T-Lymphocyte & Innate Immune Cell Activation Assays
  • Leukocyte Surface Markers (Monoclonal Antibodies to Leukocyte Surface Markers)
  • Markers of leukocyte activation – protease release, ROS/RNS, NADPH oxidase (NOX), defense response - expression of anti-oxidants.
  • organs-on-a-chip (Bnam et al., 2016; Ribas et al., 2017; Wufuer et al. 2016)

REFERENCES:

Benam KH, Villenave R, Lucchesi C, Varone 1, Hubeau C, Lee HH, Alves SE, Salmon M, Ferrante TC, Weaver JC, Bahinski A, Hamilton GA, Ingber DE., Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro, Nat Methods. 2016 Feb;13(2):151-7.

Ribas, J., Zhang, Y. S., Pitrez, P. R., Leijten, J., Miscuglio, M., Rouwkema, J., Dokmeci, M. R., Nissan, X., Ferreira, L. and Khademhosseini, A. (2017), Organ-On-A-Chip: Biomechanical Strain Exacerbates Inflammation on a Progeria-on-a-Chip Model doi:10.1002/smll.201770087

Wufuer M, Lee G, Hur W, Jeon B, Kim BJ, Choi  TH, Lee SH, Skin-on-a-chip model simulating inflammation, edema and drug-based treatment,  Nature Scientific Reports 6, Article number: 37471 (2016) doi:10.1038/srep37471


References

Kourtzelis I and Mitroulis I, Encyclopedia of Inflammatory Diseases, Leukocyte Recruitment, pp 1-9, Compendium of Inflammatory Diseases, Editors: Michael J. Parnham , Springer Basel, 2015, DOI 10.1007/978-3-0348-0620-6_177-1

Kumar, V.; Abbas, AK.; Fausto, N.; Aster, J. Robbins and Cotran: Pathologic Basis of Disease. 8. Elsevier; Philadelphia: 2010.

Leick M, Azcutia V, Newton G, Luscinskas FW., Leukocyte recruitment in inflammation: basic concepts and new mechanistic insights based on new models and microscopic imaging technologies, Cell Tissue Res. 2014 Mar;355(3):647-56

Nourshargh S, Alon R., Leukocyte migration into inflamed tissues., Immunity. 2014 Nov 20;41(5):694-707


Event: 265: Activation, Stellate cells

Short Name: Activation, Stellate cells

Key Event Component

Process Object Action
hepatic stellate cell activation hepatic stellate cell increased

AOPs Including This Key Event


Biological Context

Level of Biological Organization
Cellular

Cell term

Cell term
hepatic stellate cell

Domain of Applicability


Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens High NCBI
human and other cells in culture human and other cells in culture High NCBI
Rattus norvegicus Rattus norvegicus High NCBI
mouse Mus musculus High NCBI
pigs Sus scrofa High NCBI
Life Stage Applicability
Life Stage Evidence
All life stages
Sex Applicability
Sex Evidence
Unspecific

Human: Friedman, 2008

Rat: George et al.,1999

Mouse: Chang et al., 2014

Pig: Costa et al., 2001


Key Event Description

Stellate cell activation means a transdifferentiation from a quiescent vitamin A–storing cell to a proliferative and contractile myofibroblast. Multiple cells and cytokines play a part in the regulation of hepatic stellate cell (HSC) activation that consists of discrete phenotype responses, mainly proliferation, contractility, fibrogenesis, matrix degradation, chemotaxis, and retinoid loss.

HSCs undergo activation through a two-phase process. The first step, the initiation phase, is triggered by injured hepatocytes, reactive oxygen speecies (ROS) and paracrine stimulation from neighbouring cell types (Kupffer cells (KCs), Liver sinusoidal endothelial cells (LSECs), and platelets) and make HSCs sensitized to activation by up-regulating various receptors. The perpetuation phase refers to the maintenance of HSC activation, which is a dynamic process including the secretion of autocrine and paracrine growth factors (such as TGF-β1), chemokines, and the up-regulation of collagen synthesis (mainly type I collagen). In response to growth factors (including Platelet-derived Growth Factor (PDGF) and Vascular Endothelial Growth Factor (VEGF)) HSCs proliferate. Increased contractility (Endothelin-1 and NO are the key opposing counter-regulators that control HSC contractility, in addition to angiotensinogen II, and others) leads to increased portal resistance. Driven by chemoattractants their accumulation in areas of injury is enhanced. TGF-β1 synthesis promotes activation of neighbouring quiescent hepatic stellate cells, whereas the release of HGF (hepatocyte growth factor) stimulates regeneration of adjacent hepatocytes. The release of chemoattractants (monocyte chemoattractant protein-1(MCP-1) and colony-stimulating factors (CSFs)) amplifies inflammation (Lee and Friedman; 2011; Friedman, 2010; 2008; 2000; Bataller and Brenner, 2005; ↑ Lotersztain et al., 2005; Poli, 2000). Activated HSCs (myofibroblasts) are the primary collagen producing cell, the key cellular mediators of fibrosis and a nexus for converging inflammatory pathways leading to fibrosis. Experimental inhibition of stellate cell activation prevents fibrosis (Li, Jing-Ting et al.,2008; George et al. (1999).


How it is Measured or Detected

Alpha-smooth muscle actin (α-SMA) is a well-known marker of hepatic stellate cells activation. Anti-alpha smooth muscle Actin [1A4] monoclonal antibody reacts with the alpha smooth muscle isoform of actin.

Gene expression profiling confirmed early changes for known genes related to HSC activation such as alpha smooth muscle actin (Acta2), lysyl oxidase (Lox) and collagen, type I, alpha 1 (Col1a1). Insulin-like growth factor binding protein 3 (Igfbp3) was identified as a gene strongly affected and as marker for culture-activated HSCs and plays a role in HSC migration (Morini et al., 2005; Mannaerts et al., 2013).   


 

References

  • Lee, U.E. and S.L. Friedman (2011), Mechanisms of Hepatic Fibrogenesis, Best Pract Res Clin Gastroenterol, vol. 25, no. 2, pp. 195-206.
  • Friedman, S.L (2010), Evolving challenges in hepatic fibrosis, Nat. Rev. Gastroenterol. Hepatol, vol. 7, no. 8, pp. 425–436.
  • Friedman, S.L. (2008), Mechanisms of Hepatic Fibrogenesis, Gastroenterology, vol. 134, no. 6, pp. 1655–1669.
  • Friedman, S.L (2000), Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury, J. Biol. Chem, vol. 275, no. 4, pp. 2247-2250.
  • Bataller, R. and D.A. Brenner (2005), Liver Fibrosis, J.Clin. Invest, vol. 115, no. 2, pp. 209-218.
  • Lotersztain, S. et al. (2005), Hepatic fibrosis: molecular mechanisms and drug targets, Annu. Rev. Pharmacol. Toxicol, vol. 45, pp. 605–628.
  • Poli, G. (2000), Pathogenesis of liver fibrosis: role of oxidative stress, Mol Aspects Med, vol. 21, no. 3, pp. 49 – 98.
  • Li, Jing-Ting et al. (2008), Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies, J Gastroenterol, vol. 43, no. 6, pp. 419–428.
  • George, J. et al. (1999), In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci, vol. 96, no. 22, pp. 12719-12724.
  • Morini, S. et al. (2005), GFAP expression in the liver as an early marker of stellate cells activation, Ital J Anat Embryol, vol. 110, no. 4, pp. 193-207.
  • Mannaerts, I. et al. (2013), Gene expression profiling of early hepatic stellate cell activation reveals a role for Igfbp3 in cell migration, PLoS One, vol. 8, no.12, e84071.
  • Chang et al., 2014, Isolation and culture of hepatic stellate cells from mouse liver. Acta Biochim Biophys Sin (Shanghai).;46(4):291-8.
  • Costa et al., 2001, Early activation of hepatic stellate cells and perisinusoidal extracellular matrix changes during ex vivo pig liver perfusion. J Submicrosc Cytol Pathol.;33(3):231-40.

Event: 68: Accumulation, Collagen

Short Name: Accumulation, Collagen

Key Event Component

Process Object Action
collagen biosynthetic process collagen increased

Biological Context

Level of Biological Organization
Tissue

Organ term

Organ term
connective tissue

Domain of Applicability


Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens High NCBI
Rattus norvegicus Rattus norvegicus High NCBI
mouse Mus musculus High NCBI
Life Stage Applicability
Life Stage Evidence
All life stages
Sex Applicability
Sex Evidence
Unspecific

Humans: Bataller and  Brenner, 2005; Decaris et al., 2015.  

Mice: Dalton et al., 2009; Leung et al., 2008; Nan et al., 2013.

Rats: Hamdy and El-Demerdash, 2012; Li, Li et al., 2012; Natajaran et al., 2006; Luckey and Petersen, 2001.

 


Key Event Description

Collagen is mostly found in fibrous tissues such as tendons, ligaments and skin. It is also abundant in corneas, cartilage, bones, blood vessels, the gut, intervertebral discs, and the dentin in teeth. In muscle tissue, it serves as a major component of the endomysium. Collagen is the main structural protein in the extracellular space in the various connective tissues, making up from 25% to 35% of the whole-body protein content. In normal tissues, collagen provides strength, integrity, and structure. When tissues are disrupted following injury, collagen is needed to repair the defect. If too much collagen is deposited, normal anatomical structure is lost, function is compromised, and fibrosis results.

The fibroblast is the most common collagen producing cell.Collagen-producing cells may also arise from the process of transition of differentiated epithelial cells into mesenchymal cells (EMT). This has been observed e.g. during renal fibrosis (transformation of tubular epithelial cells into fibroblasts) and in liver injury (transdifferentiation of hepatocytes and cholangiocytes into fibroblasts) (Henderson and Iredale, 2007).

There are close to 20 different types of collagen found with the predominant form being type I collagen. This fibrillar form of collagen represents over 90 percent of our total collagen and is composed of three very long protein chains which are wrapped around each other to form a triple helical structure called a collagen monomer. Collagen is produced initially as a larger precursor molecule called procollagen. As the procollagen is secreted from the cell, procollagen proteinases remove the extension peptides from the ends of the molecule. The processed molecule is referred to as collagen and is involved in fiber formation. In the extracellular spaces the triple helical collagen molecules line up and begin to form fibrils and then fibers. Formation of stable crosslinks within and between the molecules is promoted by the enzyme lysyl oxidase and gives the collagen fibers tremendous strength (Diegelmann,2001). The overall amount of collagen deposited by fibroblasts is a regulated balance between collagen synthesis and collagen catabolism. Disturbance of this balance leads to changes in the amount and composition of collagen. Changes in the composition of the extracellular matrix initiate positive feedback pathways that increase collagen production.

Normally, collagen in connective tissues has a slow turn over; degradating enzymes are collagenases, belonging to the family of matrix metalloproteinases (MMPs).Other cells that can synthesize and release collagenase are macrophages, neutrophils, osteoclasts, and tumor cells (Di Lullo et al., 2001; Prockop and Kivirikko, 1995; Miller and Gay, 1987;Kivirikko  and  Risteli, 1976).

 


How it is Measured or Detected

 

Determination of the amount of collagen produced in vitro can be done in a variety of ways ranging from simple colorimetric assays to elaborate chromatographic procedures using radioactive and non-radioactive material. What most of these procedures have in common is the need to destroy the cell layer to obtain solubilized collagen from the pericellular matrix. Rishikof et al describe several methods to assess the in vitro production of type I collagen: Western immunoblotting of intact alpha1(I) collagen using antibodies directed to alpha1(I) collagen amino and carboxyl propeptides, the measurement of alpha1(I) collagen mRNA levels using real-time polymerase chain reaction, and methods to determine the transcriptional regulation of alpha1(I) collagen using a nuclear run-on assay (Rishikof et al., (2005)


 

References

  • Henderson, N.C. and J.P. Iredale (2007), Liver fibrosis: cellular mechanisms of progression and resolution, Clin Sci (Lond), vol. 112, no. 5, pp. 265-280.
  • Diegelmann, R.F. (2001), Collagen Metabolism, Wounds, vol. 13, no. 5, available at www.medscape.com/viewarticle/423231 (accessed on 20 Jamuary 2016).
  • Di Lullo, G.A. et al. (2001), Mapping the Ligand-binding Sites and Disease-associated Mutations on the Most Abundant Protein in the Human, Type I Collagen, J. Biol. Chem, vol. 277, no. 6, pp. 4223–4231.
  • Prockop, D.J. and K.I. Kivirikko (1995), Collagens: molecular biology, diseases, and potentials for therapy, Annu Rev Biochem, vol. 64, pp. 403-434.
  • Miller, E.J. and S. Gay (1987), The collagens: an overview and update, Methods Enzymol, vol. 144, pp. 3-41.
  • Kivirikko, K.I. and L. Risteli (1976), Biosynthesis of collagen and its alterations in pathological states, Med Biol, vol. 54, no. 3, pp. 159-186.
  • Rishikof, D.C. et al. (2005), Methods for measuring type I collagen synthesis in vitro, Methods, Mol Med, vol. 117, pp.129-140.
  • Bataller, R. and D.A. Brenner (2005), Liver Fibrosis, J.Clin. Invest, vol. 115, no. 2, pp. 209-218.
  • Decaris, M.L. et al. (2015), Turnover rates of hepatic collagen and circulating collagen- associated proteins in humans with chronic liver disease, PLoS One, vol. 10, no. 4, e0123311.
  • Dalton, S.R. et al. (2009), Carbon tetrachloride-induced liver damage in asialoglycoprotein receptor-deficient mice, Biochem Pharmacol, vol. 77, no. 7, pp. 1283-1290.
  • Leung, T.M. et al. (2008), Endothelial nitric oxide synthase is a critical factor in experimental liver fibrosis, Int J Exp Pathol, vol. 89, no. 4, pp. 241-250.
  • Nan, Y.M. et al. (2013), Activation of peroxisome proliferator activated receptor alpha ameliorates ethanol mediated liver fibrosis in mice, Lipids in Health and Disease, vol. 12, p. 11.
  • Hamdy, N. and E. El-Demerdash. (2012), New therapeutic aspect for carvedilol: antifibrotic effects of carvedilol in chronic carbon tetrachloride-induced liver damage, Toxicol Appl Pharmacol, vol. 261, no. 3, pp. 292-299.
  • Li, Li et al. (2012), Establishment of a standardized liver fibrosis model with different pathological stages in rats, Gastroenterol Res Pract; vol. 2012, Article ID 560345.Natajaran, S.K. et al. (2006), Oxidative stress in the development of liver cirrhosis: a comparison of two different experimental models, J Gastroenterol Hepatol, vol. 21, no. 6, pp. 947-957.
  • Natarajan SK, Thomas S, Ramamoorthy P, et al. Oxidative stress in the development of liver cirrhosis: a comparison of two different experimental models. J Gastroenterol Hepatol. 2006;21:947–957. doi: 10.1111/j.1440-1746.2006.04231.x
  • Luckey, S.W., and D.R. Petersen (2001), Activation of Kupffer cells during the course of carbon tetrachloride-induced liver injury and fibrosis in rats, Exp Mol Pathol, vol. 71, no. 3, pp. 226-240.

List of Adverse Outcomes in this AOP

Event: 344: N/A, Liver fibrosis

Short Name: N/A, Liver fibrosis

Key Event Component

Process Object Action
liver fibrosis liver occurrence

AOPs Including This Key Event


Biological Context

Level of Biological Organization
Organ

Organ term

Organ term
liver

Domain of Applicability


Taxonomic Applicability
Term Scientific Term Evidence Links
human Homo sapiens High NCBI
Rattus norvegicus Rattus norvegicus High NCBI
mouse Mus musculus High NCBI
Life Stage Applicability
Life Stage Evidence
All life stages
Sex Applicability
Sex Evidence
Unspecific

Human: Bataller and Brenner, 2005;Merck Manual, 2015; Blachier et al., 2013.

Rat, mouse: Liedtke et al., 2013


Key Event Description

Liver fibrosis results from perpetuation of the normal wound healing response, as a result of repeated cycles of hepatocyte injury and repair and is a dynamic process, characterised by an excessive deposition of ECM (extracellular matrix) proteins including glycoproteins, collagens, and proteoglycans. It is usually secondary to hepatic injury and inflammation, and progresses at different rates depending on the aetiology of liver disease and is also influenced by environmental and genetic factors. If fibrosis continues, it disrupts the normal architecture of the liver, altering the normal function of the organ and ultimately leading to liver damage. Cirrhosis represents the final stage of fibrosis. It is characterised by fibrous septa which divide the parenchyma into regenerative nodules which leads to vascular modifications and portal hypertension with its complications of variceal bleeding, hepatic encephalopathy, ascites, and hepatorenal syndrome. In addition, this condition is largely associated with hepatocellular carcinoma with a further increase in the relative mortality rate (Bataller and Brenner, 2005; Merck Manual,2015)

Liver fibrosis is an important health issue with clear regulatory relevance. The burden of disease attributable to liver fibrosis is quite high; progressive hepatic fibrosis, ultimately leading to cirrhosis, is a significant contributor to global health burden (Lim and Kim, 2008). In the European Union, 0.1 % of the population is affected by cirrhosis, the most advanced stage of liver fibrosis with full architectural disturbances (Blachier et al., 2013). Besides the epidemiological relevance, liver fibrosis also imposes a considerable economic burden on society. Indeed, the only curative therapy for chronic liver failure is liver transplantation. More than 5.500 orthotopic liver transplantations are currently performed in Europe on a yearly basis, costing up to €100.000 the first year and €10.000 yearly thereafter (Van Agthoven et al., 2001). 


How it is Measured or Detected

Liver biopsy is an important part of the evaluation of patients with a variety of liver diseases. Besides establishing the diagnosis, the biopsy is often used to assess the severity of the disease. Until recently it has been assumed that fibrosis is an irreversible process, so most grading and staging systems have relatively few stages and are not very sensitive for describing changes in fibrosis. In all systems, the stages are determined by both the quantity and location of the fibrosis, with the formation of septa and nodules as major factors in the transition from one stage to the next. The absolute amount of fibrous tissue is variable within each stage, and there is considerable overlap between stages. Commonly used systems are the Knodell score with 4 stages - no fibrosis (score 0) to fibrous portal expansion (score 2) to bridging fibrosis (score 3) and Cirrhosis (score 4) – and the more sensitive Ishak fibrosis score with six stages - from no fibrosis (stage 0) over increasing fibrous expansion on portal areas (stages 1-2), bridging fibrosis (stages 3-4), and nodules (stage 5) to cirrhosis (stage 6) (Goodman, 2007). Liver biopsy is an invasive test with many possible complications and the potential for sampling error. Noninvasive tests become increasingly precise in identifying the amount of liver fibrosis through computer-assisted image analysis. Standard liver tests are of limited value in assessing the degree of fibrosis. Direct serologic markers of fibrosis include those associated with matrix deposition — e.g.procollagen type III amino-terminal peptide (P3NP), type I and IV collagens, laminin, hyaluronic acid, and chondrex. P3NP is the most widely studied marker of hepatic fibrosis. Other direct markers of fibrosis are those associated with matrix degradation, ie, matrix metalloproteinases 2 and 3 (MMP-2, MMP- 3) and tissue inhibitors of metalloproteinases 1 and 2 (TIMP-1, TIMP-2).These tests are not commercially available, and the components are not readily available in most clinical laboratories. Some indirect markers that combine several parameters are available but not very reliable. Conventional imaging studies (ultrasonography and computed tomography) are not sensitive for fibrosis. Hepatic elastography, a method for estimating liver stiffness, is a recent development in the noninvasive measurement of hepatic fibrosis. Currently, elastography can be accomplished by ultrasound or magnetic resonance. Liver biopsy is still needed if laboratory testing and imaging studies are inconclusive (Carey, 2010; Germani et al., 2011) .


Regulatory Significance of the AO

From the OECD - GUIDANCE DOCUMENT ON DEVELOPING AND ASSESSING ADVERSE OUTCOME PATHWAYS - Series on Testing and Assessment 18: "...an adverse effect that is of regulatory interest (e.g. repeated dose liver fibrosis)"


References

  • Bataller, R. and D.A. Brenner (2005), Liver Fibrosis, J.Clin. Invest, vol. 115, no. 2, pp. 209-218.
  • Merck Manual available at: http://www.merckmanuals.com/professional/hepatic_and_biliary_disorders/fibrosis_and_cirrhosis/hepatic_fibrosis.html,(accessed 10 February 2015).
  • Lim, Y. and W. Kim (2008), The global impact of hepatic fibrosis and end-stage liver disease, Clin Liver Dis, vol. 12, no. 4, pp. 733-746.
  • Blachier, M. et al. (2013), The burden of liver disease in Europe: a review of available epidemiological data, J Hepatol, vol. 58, no. 3, pp. 593-608.
  • Van Agthoven, M. et al. (2001), A comparison of the costs and effects of liver transplantation for acute and for chronic liver failure. Transpl Int, vol. 14, no. 2, pp. 87-94.
  • Goodman, Z.D. (2007), Grading and staging systems for inflammation and fibrosis in chronic liver diseases, Journal of Hepatology, vol. 47, no. 4, pp. 598-607.
  • Carey, E. (2010), Noninvasive tests for liver disease, fibrosis, and cirrhosis: Is liver biopsy obsolete? Cleveland Clinic Journal of Medicine, vol. 77, no. 8, pp. 519-527.
  • Germani, G. et al. (2011), Assessment of Fibrosis and Cirrhosis in Liver Biopsies, Semin Liver Dis, vol. 31, no. 1, pp. 82-90. available at http://www.medscape.com/viewarticle/743946_2,(accessed 10 February 2015).
  • Liedtke, C. et al. (2013), Experimental liver fibrosis research: update on animal models, legal issues and translational aspects, Fibrogenesis Tissue Repair, vol. 6, no. 1, p. 19.

Appendix 2

List of Key Event Relationships in the AOP