To the extent possible under law, AOP-Wiki has waived all copyright and related or neighboring rights to KE:1650

Event: 1650

Key Event Title

A descriptive phrase which defines a discrete biological change that can be measured. More help

Epithelial-mesenchymal transition

Short name
The KE short name should be a reasonable abbreviation of the KE title and is used in labelling this object throughout the AOP-Wiki. More help
Epithelial-mesenchymal transition
Explore in a Third Party Tool

Biological Context

Structured terms, selected from a drop-down menu, are used to identify the level of biological organization for each KE. More help
Level of Biological Organization
Tissue

Organ term

The location/biological environment in which the event takes place.The biological context describes the location/biological environment in which the event takes place.  For molecular/cellular events this would include the cellular context (if known), organ context, and species/life stage/sex for which the event is relevant. For tissue/organ events cellular context is not applicable.  For individual/population events, the organ context is not applicable.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Organ term
organ

Key Event Components

The KE, as defined by a set structured ontology terms consisting of a biological process, object, and action with each term originating from one of 14 biological ontologies (Ives, et al., 2017; https://aopwiki.org/info_pages/2/info_linked_pages/7#List). Biological process describes dynamics of the underlying biological system (e.g., receptor signalling).Biological process describes dynamics of the underlying biological system (e.g., receptor signaling).  The biological object is the subject of the perturbation (e.g., a specific biological receptor that is activated or inhibited). Action represents the direction of perturbation of this system (generally increased or decreased; e.g., ‘decreased’ in the case of a receptor that is inhibited to indicate a decrease in the signaling by that receptor).  Note that when editing Event Components, clicking an existing Event Component from the Suggestions menu will autopopulate these fields, along with their source ID and description.  To clear any fields before submitting the event component, use the 'Clear process,' 'Clear object,' or 'Clear action' buttons.  If a desired term does not exist, a new term request may be made via Term Requests.  Event components may not be edited; to edit an event component, remove the existing event component and create a new one using the terms that you wish to add.  Further information on Event Components and Biological Context may be viewed on the attached pdf. More help
Process Object Action
epithelial to mesenchymal transition cellular_component occurrence

Key Event Overview

AOPs Including This Key Event

All of the AOPs that are linked to this KE will automatically be listed in this subsection. This table can be particularly useful for derivation of AOP networks including the KE. Clicking on the name of the AOP will bring you to the individual page for that AOP. More help
AOP Name Role of event in AOP Point of Contact Author Status OECD Status
Chronic ROS leading to human treatment-resistant gastric cancer KeyEvent Shihori Tanabe (send email) Open for comment. Do not cite EAGMST Under Review
PM-induced respiratory toxicity KeyEvent li qing (send email) Under development: Not open for comment. Do not cite

Taxonomic Applicability

Latin or common names of a species or broader taxonomic grouping (e.g., class, order, family) that help to define the biological applicability domain of the KE.In many cases, individual species identified in these structured fields will be those for which the strongest evidence used in constructing the AOP was available in relation to this KE. More help
Term Scientific Term Evidence Link
Homo sapiens Homo sapiens High NCBI

Life Stages

An indication of the the relevant life stage(s) for this KE. More help
Life stage Evidence
All life stages High

Sex Applicability

An indication of the the relevant sex for this KE. More help
Term Evidence
Unspecific High

Key Event Description

A description of the biological state being observed or measured, the biological compartment in which it is measured, and its general role in the biology should be provided. More help

Epithelial-mesenchymal transition (EMT) is a phenomenon in which the cells transit from epithelial-like into mesenchymal-like phenotypes (Huan et al., 2022; Tanabe, 2017; Tanabe et al., 2015). In cancer, cells exhibiting EMT features contribute to metastasis and drug resistance.

It is known that D-2-hydroxyglurate induces EMT (Guerra et al., 2017; Jia et al., 2018; Mishra et al., 2018; Sciacovelli & Frezza, 2017). D-2-hydroxyglurate, an inhibitor of Jumonji-family histone demethylase, increased the trimethylation of histone H3 lysine 4 (H3K4) in the promoter region of the zinc finger E-box-binding homeobox 1 (ZEB1), followed by the induction of EMT (Colvin et al., 2016).

Wnt5a induces EMT and metastasis in non-small-cell lung cancer (Wang et al., 2017).

EMT is related to Wnt/beta-catenin signaling and is important for treatment-resistant cancer (Tanabe et al., 2016)

TGFbeta induces EMT (Wendt et al., 2010).

ZEB is one of the critical transcription factors for EMT regulation (Zhang et al., 2015).

SNAI1 (Snail) is an important transcription factor for cell differentiation and survival. The phosphorylation and nuclear localization of Snail1 induced by Wnt signaling pathways are critical for the regulation of EMT (Kaufhold & Bonavida, 2014).

Transcription factors SNAI1 and TWIST1 induce EMT (Hodge et al., 2018) (Mani et al., 2008)

It is suggested that Sp1, a transcription factor involved in cell growth and metastasis, is induced by cytochrome P450 1B1 (CYP1B1), and promotes EMT, which leads to cell proliferation and metastasis (Kwon et al., 2016).

How It Is Measured or Detected

A description of the type(s) of measurements that can be employed to evaluate the KE and the relative level of scientific confidence in those measurements.These can range from citation of specific validated test guidelines, citation of specific methods published in the peer reviewed literature, or outlines of a general protocol or approach (e.g., a protein may be measured by ELISA). Do not provide detailed protocols. More help
  • EMT can be detected by immunostaining with pro-surfactant protein-C (pro-SPC) and N-cadherin in idiopathic pulmonary fibrosis (IPF) lung in vivo (Kim et al., 2006).
  • EMT can be detected by immunostaining with vimentin in lung alveola in vivo (Kim et al., 2006).
  • EMT can be detected as the increased level of the transcription factors, zinc finger E-box-binding homeobox (ZEB), Twist and Snail (Huang et al., 2022).

Domain of Applicability

A description of the scientific basis for the indicated domains of applicability and the WoE calls (if provided).  More help
  • Wnt5a expression leads to epithelial-mesenchymal transition (EMT) and metastasis in non-small-cell lung cancer in Homo sapiens (Wang et al., 2017).
  • WNT2 expression lead to EMT induction in Homo sapiens (Zhou et al., 2016).
  • EMT is induced in cancer and involved in cancer metastasis in Homo sapiens (Suarez-Carmona, Lesage, Cataldo, & Gilles, 2017) (Du & Shim, 2016).

References

List of the literature that was cited for this KE description. More help

Colvin, H., Nishida, N., Konno, M., Haraguchi, N., Takahashi, H., Nishimura, J., . . . Ishii, H. (2016). Oncometabolite D-2-Hydroxyglurate Directly Induces Epithelial-Mesenchymal Transition and is Associated with Distant Metastasis in Colorectal Cancer. Sci Rep, 6, 36289. doi:10.1038/srep36289

Du, B., & Shim, J. S. (2016). Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules, 21(7). doi:10.3390/molecules21070965

Fang, C. X., Ma, C. M., Jiang, L., Wang, X. M., Zhang, N., Ma, J. N., . . . Zhao, Y. D. (2018). p38 MAPK is Crucial for Wnt1- and LiCl-Induced Epithelial Mesenchymal Transition. Curr Med Sci, 38(3), 473-481. doi:10.1007/s11596-018-1903-4

Guerra, F., Guaragnella, N., Arbini, A. A., Bucci, C., Giannattasio, S., & Moro, L. (2017). Mitochondrial Dysfunction: A Novel Potential Driver of Epithelial-to-Mesenchymal Transition in Cancer. Front Oncol, 7, 295. doi:10.3389/fonc.2017.00295

Hodge, D. Q., Cui, J., Gamble, M. J., & Guo, W. (2018). Histone Variant MacroH2A1 Plays an Isoform-Specific Role in Suppressing Epithelial-Mesenchymal Transition. Sci Rep, 8(1), 841. doi:10.1038/s41598-018-19364-4

Huan, Z., Zhang, Z., Zhou, C., Liu, L., Huang, C. (2022). Epithelial-mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm. 2022 May 18;3(2):e144. doi: 10.1002/mco2.144

Jia, D., Park, J. H., Jung, K. H., Levine, H., & Kaipparettu, B. A. (2018). Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States. Cells, 7(3). doi:10.3390/cells7030021

Kaufhold, S., & Bonavida, B. (2014). Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J Exp Clin Cancer Res, 33, 62. doi:10.1186/s13046-014-0062-0

Kim, K. K., Kugler, M. C., Wolters, P. J., Robillard, L., Galvez, M. G., Brumwell, A. N., . . . Chapman, H. A. (2006). Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. PNAS, 103(35), 13180-13185. doi:10.1073/pnas.0605669103

Kwon, Y. J., Baek, H. S., Ye, D. J., Shin, S., Kim, D., & Chun, Y. J. (2016). CYP1B1 Enhances Cell Proliferation and Metastasis through Induction of EMT and Activation of Wnt/beta-Catenin Signaling via Sp1 Upregulation. PLoS One, 11(3), e0151598. doi:10.1371/journal.pone.0151598

Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., . . . Weinberg, R. A. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704-715. doi:10.1016/j.cell.2008.03.027

Mishra, P., Tang, W., Putluri, V., Dorsey, T. H., Jin, F., Wang, F., . . . Ambs, S. (2018). ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming. J Clin Invest, 128(1), 323-340. doi:10.1172/JCI93815

Sciacovelli, M., & Frezza, C. (2017). Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J, 284(19), 3132-3144. doi:10.1111/febs.14090

Suarez-Carmona, M., Lesage, J., Cataldo, D., & Gilles, C. (2017). EMT and inflammation: inseparable actors of cancer progression. Mol Oncol, 11(7), 805-823. doi:10.1002/1878-0261.12095

Sun, J., Yang, X., Zhang, R., Liu, S., Gan, X., Xi, X., . . . Sun, Y. (2017). GOLPH3 induces epithelial-mesenchymal transition via Wnt/beta-catenin signaling pathway in epithelial ovarian cancer. Cancer Med, 6(4), 834-844. doi:10.1002/cam4.1040

Tanabe, S. (2017). Molecular markers and networks for cancer and stem cells. J Embryol Stem Cell Res, 1(1).

Tanabe, S., Kawabata, T., Aoyagi, K., Yokozaki, H., & Sasaki, H. (2016). Gene expression and pathway analysis of CTNNB1 in cancer and stem cells. World J Stem Cells, 8(11), 384-395. doi:10.4252/wjsc.v8.i11.384

Tanabe, S., Komatsu, M., Kazuhiko, A., Yokozaki, H., & Sasaki, H. (2015). Implications of epithelial-mesenchymal transition in gastric cancer. Translational Gastrointestinal Cancer, 4(4), 258-264. Retrieved from http://tgc.amegroups.com/article/view/6996

Wang, B., Tang, Z., Gong, H., Zhu, L., & Liu, X. (2017). Wnt5a promotes epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer. Biosci Rep, 37(6). doi:10.1042/BSR20171092

Wendt, M. K., Smith, J. A., & Schiemann, W. P. (2010). Transforming growth factor-beta-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene, 29(49), 6485-6498. doi:10.1038/onc.2010.377

Zhang, P., Sun, Y., & Ma, L. (2015). ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle, 14(4), 481-487. doi:10.1080/15384101.2015.1006048

Zhou, Y., Huang, Y., Cao, X., Xu, J., Zhang, L., Wang, J., . . . Zheng, M. (2016). WNT2 Promotes Cervical Carcinoma Metastasis and Induction of Epithelial-Mesenchymal Transition. PLoS One, 11(8), e0160414. doi:10.1371/journal.pone.0160414